This report summarizes the results of the SemEval 2018 task on machine comprehension using commonsense knowledge. For this machine comprehension task, we created a new corpus, MCScript. It contains a high number of questions that require commonsense knowledge for finding the correct answer. 11 teams from 4 different countries participated in this shared task, most of them used neural approaches. The best performing system achieves an accuracy of 83.95%, outperforming the baselines by a large margin, but still far from the human upper bound, which was found to be at 98%.
Induction of common sense knowledge about prototypical sequence of events has recently received much attention (e.g., Chambers and Jurafsky (2008);Regneri et al. (2010)). Instead of inducing this knowledge in the form of graphs, as in much of the previous work, in our method, distributed representations of event realizations are computed based on distributed representations of predicates and their arguments, and then these representations are used to predict prototypical event orderings. The parameters of the compositional process for computing the event representations and the ranking component of the model are jointly estimated. We show that this approach results in a substantial boost in performance on the event ordering task with respect to the previous approaches, both on natural and crowdsourced texts.
Semantic scripts is a conceptual representation which defines how events are organized into higher level activities. Practically all the previous approaches to inducing script knowledge from text relied on count-based techniques (e.g., generative models) and have not attempted to compositionally model events. In this work, we introduce a neural network model which relies on distributed compositional representations of events. The model captures statistical dependencies between events in a scenario, overcomes some of the shortcomings of previous approaches (e.g., by more effectively dealing with data sparsity) and outperforms count-based counterparts on the narrative cloze task.
Recent research in psycholinguistics has provided increasing evidence that humans predict upcoming content. Prediction also affects perception and might be a key to robustness in human language processing. In this paper, we investigate the factors that affect human prediction by building a computational model that can predict upcoming discourse referents based on linguistic knowledge alone vs. linguistic knowledge jointly with common-sense knowledge in the form of scripts. We find that script knowledge significantly improves model estimates of human predictions. In a second study, we test the highly controversial hypothesis that predictability influences referring expression type but do not find evidence for such an effect.
The majority of current systems for end-toend dialog generation focus on response quality without an explicit control over the affective content of the responses. In this paper, we present an affect-driven dialog system, which generates emotional responses in a controlled manner using a continuous representation of emotions. The system achieves this by modeling emotions at a word and sequence level using: (1) a vector representation of the desired emotion, (2) an affect regularizer, which penalizes neutral words, and (3) an affect sampling method, which forces the neural network to generate diverse words that are emotionally relevant. During inference, we use a reranking procedure that aims to extract the most emotionally relevant responses using a humanin-the-loop optimization process. We study the performance of our system in terms of both quantitative (BLEU score and response diversity), and qualitative (emotional appropriateness) measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.