Accurate spatio-temporal prediction is essential for capturing city dynamics and planning mobility services. State-of-the-art deep spatio-temporal predictive models depend on rich and representative training data for target regions and tasks. However, the availability of such data is typically limited. Furthermore, existing predictive models fail to utilize cross-correlations across tasks and cities. In this paper, we propose MetaCitta, a novel deep meta-learning approach that addresses the critical challenges of data scarcity and model generalization. MetaCitta adopts the data from different cities and tasks in a generalizable spatio-temporal deep neural network. We propose a novel meta-learning algorithm that minimizes the discrepancy between spatio-temporal representations across tasks and cities. Our experiments with real-world data demonstrate that the proposed MetaCitta approach outperforms state-of-the-art prediction methods for zero-shot learning and pre-training plus fine-tuning. Furthermore, MetaCitta is computationally more efficient than the existing meta-learning approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.