In this paper, we analyze a system of delay differential equations incorporating prey’s refuge, fear, fear-response delay, extra food for predators and their gestation lag. First, we examined the system without delay. The persistence, stability (local and global) and various bifurcations are discussed. We provide detailed analysis for transcritical and Hopf-bifurcation. The existence of positive equilibria and the stability of prey-free equilibrium are interrelated. It is shown that (i) fear can stabilize or destabilize the system, (ii) prey refuge in a specific limit can be advantageous for both species, (iii) at a lower energy level (gained from extra food), the system undergoes a supercritical Hopf-bifurcation and (iv) when the predator gains high energy from extra food, it can survive through a homoclinic bifurcation, and prey may become extinct. The possible occurrence of bi-stability with or without delay is discussed. We observed switching of stability thrice via subcritical Hopf-bifurcation for fear-response delay. On changing some parametric values, the system undergoes a supercritical Hopf-bifurcation for both delay parameters. The delayed system undergoes the Hopf-bifurcation, so we can say that both delay parameters play a vital role in regulating the system’s dynamics. The analytical results obtained are verified with the numerical simulation.
Depending on behavioral differences, reproductive capability and dependency, the life span of a species is divided mainly into two classes, namely immature and mature. In this paper, we have studied the dynamics of a predator–prey system considering stage structure in prey and the effect of predator-induced fear with two discrete time delays: maturation delay and fear response delay. We consider that predators cooperate during hunting of mature prey and also include its impact in fear term. The conditions for existence of different equilibria, their stability analysis are carried out for non-delayed system and bifurcation results are presented extensively. It is observed that the fear parameter has stabilizing effect whereas the cooperative hunting factor having destabilizing effect on the system via occurrence of supercritical Hopf-bifurcation. Further, we observe that the system exhibits backward bifurcation between interior equilibrium and predator free equilibrium and hence the situation of bi-stability occurs in the system. Thereafter, we differentiate the region of stability and instability in bi-parametric space. We have also studied the system’s dynamics with respect to maturation and fear response delay and observed that they also play a vital role in the system stability and occurrence of Hopf-bifurcation is shown with respect to both time delays. The system shows stability switching phenomenon and even higher values of fear response delay leads the system to enter in chaotic regime. The role of fear factor in switching phenomenon is discussed. Comprehensive numerical simulation and graphical presentation are carried out using MATLAB and MATCONT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.