SummaryBackgroundMidlife hypertension confers increased risk for cognitive impairment in late life. The sensitive period for risk exposure and extent that risk is mediated through amyloid or vascular-related mechanisms are poorly understood. We aimed to identify if, and when, blood pressure or change in blood pressure during adulthood were associated with late-life brain structure, pathology, and cognition.MethodsParticipants were from Insight 46, a neuroscience substudy of the ongoing longitudinal Medical Research Council National Survey of Health and Development, a birth cohort that initially comprised 5362 individuals born throughout mainland Britain in one week in 1946. Participants aged 69–71 years received T1 and FLAIR volumetric MRI, florbetapir amyloid-PET imaging, and cognitive assessment at University College London (London, UK); all participants were dementia-free. Blood pressure measurements had been collected at ages 36, 43, 53, 60–64, and 69 years. We also calculated blood pressure change variables between ages. Primary outcome measures were white matter hyperintensity volume (WMHV) quantified from multimodal MRI using an automated method, amyloid-β positivity or negativity using a standardised uptake value ratio approach, whole-brain and hippocampal volumes quantified from 3D-T1 MRI, and a composite cognitive score—the Preclinical Alzheimer Cognitive Composite (PACC). We investigated associations between blood pressure and blood pressure changes at and between 36, 43, 53, 60–64, and 69 years of age with WMHV using generalised linear models with a gamma distribution and log link function, amyloid-β status using logistic regression, whole-brain volume and hippocampal volumes using linear regression, and PACC score using linear regression, with adjustment for potential confounders.FindingsBetween May 28, 2015, and Jan 10, 2018, 502 individuals were assessed as part of Insight 46. 465 participants (238 [51%] men; mean age 70·7 years [SD 0·7]; 83 [18%] amyloid-β-positive) were included in imaging analyses. Higher systolic blood pressure (SBP) and diastolic blood pressure (DBP) at age 53 years and greater increases in SBP and DBP between 43 and 53 years were positively associated with WMHV at 69–71 years of age (increase in mean WMHV per 10 mm Hg greater SBP 7%, 95% CI 1–14, p=0·024; increase in mean WMHV per 10 mm Hg greater DBP 15%, 4–27, p=0·0057; increase in mean WMHV per one SD change in SBP 15%, 3–29, p=0·012; increase in mean WMHV per 1 SD change in DBP 15%, 3–30, p=0·017). Higher DBP at 43 years of age was associated with smaller whole-brain volume at 69–71 years of age (−6·9 mL per 10 mm Hg greater DBP, −11·9 to −1·9, p=0·0068), as were greater increases in DBP between 36 and 43 years of age (−6·5 mL per 1 SD change, −11·1 to −1·9, p=0·0054). Greater increases in SBP between 36 and 43 years of age were associated with smaller hippocampal volumes at 69–71 years of age (−0·03 mL per 1 SD change, −0·06 to −0·001, p=0·043). Neither absolute blood pressure nor change in blood pressure predicted amyloi...
Background: The tau protein plays a central role in Alzheimer’s disease (AD) and there is huge interest in measuring tau in blood and CSF. Methods: We developed a set of immunoassays to measure tau in specimens from humans diagnosed based on current best clinical and CSF biomarker criteria. Results: In CSF, mid-region-detected and N-terminal-detected tau predominated and rose in disease. In plasma, an N-terminal assay (NT1) detected elevated levels of tau in AD and AD-mild cognitive impairment (MCI). Plasma NT1 measurements separated controls from AD-MCI (area under the curve, AUC=0.88) and AD (AUC=0.96) in a Discovery Cohort; and in a Validation Cohort (with AUCs=0.79 and 0.75, respectively). Conclusions: The forms of tau in CSF and plasma are distinct, but in each specimen type the levels of certain fragments are increased in AD. Measurement of plasma NT1 tau should be aggressively pursued as a potential blood-based screening test for AD/AD-MCI.
The neurodegenerative disorder Alzheimer's disease is characterised by the formation of β-amyloid plaques and neurofibrillary tangles in the brain parenchyma, which cause synapse and neuronal loss. This leads to clinical symptoms, such as progressive memory deficits. Clinically, these pathological changes can be detected in the cerebrospinal fluid and with brain imaging, although reliable blood tests for plaque and tangle pathologies remain to be developed. Plaques and tangles often co-exist with other brain pathologies, including aggregates of transactive response DNA-binding protein 43 and Lewy bodies, but the extent to which these contribute to the severity of Alzheimer's disease is currently unknown. In this ‘At a glance’ article and poster, we summarise the molecular biomarkers that are being developed to detect Alzheimer's disease and its related pathologies. We also highlight the biomarkers that are currently in clinical use and include a critical appraisal of the challenges associated with applying these biomarkers for diagnostic and prognostic purposes of Alzheimer's disease and related neurodegenerative disorders, also in their prodromal clinical phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.