Heparan sulfate proteoglycans (HSPGs) are an integral and dynamic part of normal tissue architecture at the cell surface and within the extracellular matrix. The modification of HSPGs in the tumor microenvironment is known to result not just in structural but also functional consequences, which significantly impact cancer progression. As substrates for the key enzymes sulfatases and heparanase, the modification of HSPGs is typically characterized by the degradation of heparan sulfate (HS) chains/sulfation patterns via the endo-6-O-sulfatases (Sulf1 and Sulf2) or by heparanase, an endo-glycosidase that cleaves the HS polymers releasing smaller fragments from HSPG complexes. Numerous studies have demonstrated how these enzymes actively influence cancer cell proliferation, signaling, invasion, and metastasis. The activity or expression of these enzymes has been reported to be modified in a variety of cancers. Such observations are consistent with the degradation of normal architecture and basement membranes, which are typically compromised in metastatic disease. Moreover, recent studies elucidating the requirements for these proteins in tumor initiation and progression exemplify their importance in the development and progression of cancer. Thus, as the influence of the tumor microenvironment in cancer progression becomes more apparent, the focus on targeting enzymes that degrade HSPGs highlights one approach to maintain normal tissue architecture, inhibit tumor progression, and block metastasis. This review discusses the role of these enzymes in the context of the tumor microenvironment and their promise as therapeutic targets for the treatment of cancer.
Metabolic alterations are increasingly recognized as important novel anti-cancer targets. Among several regulators of metabolic alterations, fructose 2,6 bisphosphate (F2,6BP) is a critical glycolytic regulator. Inhibition of the active form of PFKFB3 using a novel inhibitor, PFK158 resulted in reduced glucose uptake, ATP production, lactate release as well as induction of apoptosis in gynecologic cancer cells. Moreover, we found that PFK158 synergizes with carboplatin (CBPt) and paclitaxel (PTX) in the chemoresistant cell lines, C13 and HeyA8MDR but not in their chemosensitive counterparts, OV2008 and HeyA8, respectively. We determined that PFK158-induced autophagic flux leads to lipophagy resulting in the downregulation of cPLA2, a lipid droplet (LD) associated protein. Immunofluorescence and co-immunoprecipitation revealed colocalization of p62/SQSTM1 with cPLA2 in HeyA8MDR cells uncovering a novel pathway for the breakdown of LDs promoted by PFK158. Interestingly, treating the cells with the autophagic inhibitor bafilomycin A reversed the PFK158-mediated synergy and lipophagy in chemoresistant cells. Finally, in a highly metastatic PTX-resistant in vivo ovarian mouse model, a combination of PFK158 with CBPt significantly reduced tumor weight and ascites and reduced LDs in tumor tissue as seen by immunofluorescence and transmission electron microscopy compared to untreated mice. Since the majority of cancer patients will eventually recur and develop chemoresistance, our results suggest that PFK158 in combination with standard chemotherapy may have a direct clinical role in the treatment of recurrent cancer.
The RING finger ubiquitin ligase Siah2 controls the stability of various substrates involved in stress and hypoxia responses, including the PHD3, which controls the stability of HIF-1␣. In the present study we determined the role of Siah2 phosphorylation in the regulation of its activity toward PHD3. We show that Siah2 is subject to phosphorylation by p38 MAPK, which increases Siah2-mediated degradation of PHD3. Consistent with these findings, MKK3/MKK6 double-deficient cells, which cannot activate p38 kinases, exhibit impaired Siah2-dependent degradation of PHD3. Phosphopeptide mapping identified T24 and S29 as the primary phospho-acceptor sites. Phospho-mutant forms of Siah2 (S29A or T24A/S29A) exhibit impaired degradation of PHD3, particularly after hypoxia. Conversely, a phospho-mimic form of Siah2 (T24E/S29D) exhibits stronger degradation of PHD3, compared with wild type Siah2. Whereas phospho-mutant Siah2 exhibits weaker association with PHD3, phospho-mimic Siah2 associates as well as wild type and is localized within the perinuclear region, suggesting that phosphorylation of Siah2 affects its subcellular localization and, consequently, the degree of its association with PHD3. In all, our findings reveal the phosphorylation of Siah2 by p38 and the implications of such phosphorylation for Siah2 activity toward PHD3.
A promising new strategy for cancer therapy is to target the autophagic pathway. In the current study, we demonstrate that the antimalarial drug Quinacrine (QC) reduces cell viability and promotes chemotherapy-induced cell death in an autophagy-dependent manner more extensively in chemoresistant cells compared to their isogenic chemosensitive control cells as quantified by the Chou-Talalay methodology. Our preliminary data, in vitro and in vivo, indicate that QC induces autophagy by downregulating p62/SQSTM1 to sensitize chemoresistant cells to autophagic- and caspase-mediated cell death in a p53-independent manner. QC promotes autophagosome accumulation and enhances autophagic flux by clearance of p62 in chemoresistant ovarain cancer (OvCa) cell lines to a greater extent compared to their chemosensitive controls. Notably, p62 levels were elevated in chemoresistant OvCa cell lines and knockdown of p62 in these cells resulted in a greater response to QC treatment. Bafilomycin A, an autophagy inhibitor, restored p62 levels and reversed QC-mediated cell death and thus chemosensitization. Importantly, our in vivo data shows that QC alone and in combination with carboplatin suppresses tumor growth and ascites in the highly chemoresistant HeyA8MDR OvCa model compared to carboplatin treatment alone. Collectively, our preclinical data suggest that QC in combination with carboplatin can be an effective treatment for patients with chemoresistant OvCa.
We recently identified HSulf-1 as a down-regulated gene in ovarian carcinomas. Our previous analysis indicated that HSulf-1 inactivation in ovarian cancers is partly mediated by loss of heterozygosity and epigenetic silencing. Here, we show that variant hepatic nuclear factor 1 (vHNF1), encoded by transcription factor 2 gene (TCF2, HNF1B), negatively regulates HSulf-1 expression in ovarian cancer. Immunoblot assay revealed that vHNF1 is highly expressed in HSulf-1-deficient OV207, SKOV3, and TOV-21G cell lines but not in HSulf-1-expressing OSE, OV167, and OV202 cells. By short hairpin RNA-mediated down-regulation of vHNF1 in TOV-21G cells and transient enhanced vHNF1 expression in OV202 cells, we showed that vHNF1 suppresses HSulf-1 expression in ovarian cancer cell lines. Reporter assay and chromatin immunoprecipitation experiments showed that vHNF1 is specifically recruited to HSulf-1 promoter at two different vHNF1-responsive elements in OV207 and TOV-21G cells. Additionally, down-regulation of vHNF1 expression in OV207 and TOV-21G cells increased cisplatin-or paclitaxel-mediated cytotoxicity as determined by both 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and clonogenic assays and this effect was reversed by down-regulation of HSulf-1. Moreover, nude mice bearing TOV-21G cell xenografts with stably down-regulated vHNF1 were more sensitive to cisplatin-or paclitaxel-induced cytotoxicity compared with xenografts of TOV-21G clonal lines with nontargeted control short hairpin RNA. Finally, immunohistochemical analysis of 501 ovarian tumors including 140 clear-cell tumors on tissue microarrays showed that vHNF1 inversely correlates to HSulf-1 expression. Collectively, these results indicate that vHNF1 acts as a repressor of HSulf-1 expression and might be a molecular target for ovarian cancer therapy. [Cancer Res 2009;69(11):4843-50]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.