Energy expansion and security in the current world scenario focuses on increasing the energy generation capacity and if possible, adopting cleaner and greener energy in that development process. However, too often this expansion and planning alters the landscape and human influence on its surroundings through a very complex mechanism. Resource extraction and land management activity involved in energy infrastructure development and human management of such development systems have long-term and sometimes unforeseen consequences. Although alternative energy sources are being explored, energy production is still highly dependent on fossil fuel, especially in most developing countries. Further, energy production can potentially affect land productivity, land cover, human migration, and other factors involved in running an energy production system, which presents a complex integration of these factors. Thus, land use, energy choices, infrastructure development and the population for which such facilities are being developed must be cognizant of each other, and the interactions between them need to be studied and understood closely. This study strives to analyze the implications of linkages between the energy industry, urbanization, and population and especially highlights processes that can be affected by their interaction. It is found that despite advancement in scientific tools, each of the three components, i.e., population growth, urbanization, and energy production, operates in silos, especially in developing countries, and that this complex issue of nexus is not dealt with in a comprehensive way. coal was the main source of energy and saw a large growth in the usage ratio. Coal was followed by oil, natural gas, hydropower, and renewable energy. Even though renewable energy was least among all energy sources in this period, its growth rate was much faster than at any other time in history. In the year 2011, expenditures for energy supply were more than 6 trillion USD, which accounts for approximately 10% of the world gross domestic product. Out of this world energy expenditure, the shares for Europe, North America, and Japan were about 25%, 20%, and 6%, respectively [5]. The International Energy Agency estimates that, in the year 2013 alone, the total primary energy supply (TPES) was 1.575 × 10 17 Watt-hour or 13,541 Millions of Tonnes of Oil Equivalent (Mtoe) [6]. There are other issues regarding energy consumption, for example, in the year 2014, the world's primary energy supply was 13,541 MTOE; however, final energy consumption in terms of fuel was only 8328 MTOE, i.e., 29.5% less than the total supply. One of the major reasons for this difference is because part of the energy is being consumed for products such as lubricants, asphalt, gasoline, and petrochemicals, which have chemical energy content but are not used as fuel. It is reported that the world population increased by 27% from 1990 to 2008, and the average per capita energy use also increased by 10%. For the same period 1990-2008, while overall ener...
Renewable energy has received noteworthy attention during the last few decades. This is partly due to the fact that fossil fuels are depleting and the need for energy is soaring because of the growing population of the world. This paper attempts to provide an idea of what is being done by researchers in remote sensing and geographical information system (GIS) field for exploring the renewable energy resources in order to get to a more sustainable future. Several studies related to renewable energy resources viz. geothermal energy, wind energy, hydropower, biomass, and solar energy, have been considered in this paper. The focus of this review paper is on exploring how remote sensing and GIS-based techniques have been beneficial in exploring optimal locations for renewable energy resources. Several case studies from different parts of the world which use such techniques in exploring renewable energy resource sites of different kinds have also been included in this paper. Though each of the remote sensing and GIS techniques used for exploration of renewable energy resources seems to efficiently sell itself in being the most effective among others, it is important to keep in mind that in actuality, a combination of different techniques is more efficient for the task. Throughout the paper, many issues relating to the use of remote sensing and GIS for renewable energy are examined from both current and future perspectives and potential solutions are suggested. The authors believe that the conclusions and recommendations drawn from the case studies and the literature reviewed in the present study will be valuable to renewable energy scientists and policymakers.
The Earth's ecosystems face severe environmental stress from unsustainable socioeconomic development linked to population growth, urbanization, and industrialization. Governments worldwide are interested in sustainability measures to address these issues. Remote sensing allows for the measurement, integration, and presentation of useful information for effective decision-making at various temporal and spatial scales. Scientists and decision-makers have endorsed extensive use of remote sensing to bridge gaps among disciplines and achieve sustainable development. This paper presents an extensive review of remote sensing technology used to support sustainable development efforts, with a focus on natural resource management and assessment of natural hazards. We further explore how remote sensing can be used in a cross-cutting, interdisciplinary manner to support decision-making aimed at addressing sustainable development challenges. Remote sensing technology has improved significantly in terms of sensor resolution, data acquisition time, and accessibility over the past several years. This technology has also been widely applied to address key issues and challenges in sustainability. Furthermore, an evaluation of the suitability and limitations of various satellite-derived indices proposed in the literature for assessing sustainable development goals showed that these older indices still perform reasonably well. Nevertheless, with advancements in sensor radiometry and resolution, they were less exploited and new indices are less explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.