Duchenne muscular dystrophy (DMD) is a fatal X-linked genetic disorder of skeletal muscle caused by mutation in dystrophin gene. Although the degradation of skeletal muscle extracellular matrix, inflammation and fibrosis are the common pathological features in DMD, the underlying mechanisms remain poorly understood. In this study, we have investigated the role and the mechanisms by which increased levels of matrix metalloproteinase-9 (MMP-9) protein causes myopathy in dystrophin-deficient mdx mice. The levels of MMP-9 but not tissue inhibitor of MMPs were drastically increased in skeletal muscle of mdx mice. Besides skeletal muscle, infiltrating macrophages were found to contribute significantly to the elevated levels of MMP-9 in dystrophic muscle. In vivo administration of a nuclear factor-kappa B inhibitory peptide, NBD, blocked the expression of MMP-9 in dystrophic muscle of mdx mice. Deletion of Mmp9 gene in mdx mice improved skeletal muscle structure and functions and reduced muscle injury, inflammation and fiber necrosis. Inhibition of MMP-9 increased the levels of cytoskeletal protein beta-dystroglycan and neural nitric oxide synthase and reduced the amounts of caveolin-3 and transforming growth factor-beta in myofibers of mdx mice. Genetic ablation of MMP-9 significantly augmented the skeletal muscle regeneration in mdx mice. Finally, pharmacological inhibition of MMP-9 activity also ameliorated skeletal muscle pathogenesis and enhanced myofiber regeneration in mdx mice. Collectively, our study suggests that the increased production of MMP-9 exacerbates dystrophinopathy and MMP-9 represents as one of the most promising therapeutic targets for the prevention of disease progression in DMD.
Destruction of skeletal muscle extracellular matrix is an important pathological consequence of many diseases involving muscle wasting. However, the underlying mechanisms leading to extracellular matrix breakdown in skeletal muscle tissues remain unknown. Using a microarray approach, we investigated the effect of tumor necrosis factor-related weak inducer of apoptosis (TWEAK), a recently identified muscle-wasting cytokine, on the expression of extracellular proteases in skeletal muscle. Among several other matrix metalloproteinases (MMPs), we found that the expression of MMP-9, a type IV collagenase, was drastically increased in myotubes in response to TWEAK. The level of MMP-9 was also higher in myofibers of TWEAK transgenic mice. TWEAK increased the activation of both classical and alternative nuclear factor-B (NF-B) signaling pathways. Inhibition of NF-B activity blocked the TWEAK-induced production of MMP-9 in myotubes. TWEAK also increased the activation of AP-1, and its inhibition attenuated the TWEAK-induced MMP-9 production. Overexpression of a kinase-dead mutant of NF-B-inducing kinase or IB kinase- but not IB kinase-␣ significantly inhibited the TWEAK-induced activation of MMP-9 promoter. The activation of MMP-9 also involved upstream recruitment of TRAF2 and cIAP2 proteins. TWEAK increased the activity of ERK1/2, JNK1, and p38 MAPK. However, the inhibition of only p38 MAPK blocked the TWEAK-induced expression of MMP-9 in myotubes. Furthermore the loss of body and skeletal muscle weights, inflammation, fiber necrosis, and degradation of basement membrane around muscle fibers were significantly attenuated in Mmp9 knock-out mice on chronic administration of TWEAK protein.The study unveils a novel mechanism of skeletal muscle tissue destruction in pathological conditions.
Successful placental development is crucial for optimal growth, development, maturation and survival of the embryo/fetus into adulthood. Numerous epidemiologic and experimental studies have demonstrated the profound influence of intrauterine environment on life, and the diseases to which one is subject as an adult. For the most part, these invidious influences, whether maternal hypoxia, protein or caloric deficiency or excess, and others, represent types of maternal stress. In the present review, we examine certain aspects of gene expression in the placenta as a consequence of maternal stressors. To examine these issues in a controlled manner, and in a species in which the genome has been sequenced, most of these reported studies have been performed in the mouse. Although each individual maternal stress is characterized by up-or down-regulation of specific genes in the placenta, functional analysis reveals some patterns of gene expression common to the several forms of stress. Of critical importance, these genes include those involved in DNA methylation and histone modification, cell cycle regulation, and related global pathways of great relevance to epigenesis and the developmental origins of adult health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.