In steganography, secret data are invisible in cover media, such as text, audio, video and image. Hence, attackers have no knowledge of the original message contained in the media or which algorithm is used to embed or extract such message. Image steganography is a branch of steganography in which secret data are hidden in host images. In this study, image steganography using least significant bit and secret map techniques is performed by applying 3D chaotic maps, namely, 3D Chebyshev and 3D logistic maps, to obtain high security. This technique is based on the concept of performing random insertion and selecting a pixel from a host image. The proposed algorithm is comprehensively evaluated on the basis of different criteria, such as correlation coefficient, information entropy, homogeneity, contrast, image, histogram, key sensitivity, hiding capacity, quality index, mean square error (MSE), peak signal-to-noise ratio (PSNR) and image fidelity. Results show that the proposed algorithm satisfies all the aforementioned criteria and is superior to other previous methods. Hence, it is efficient in hiding secret data and preserving the good visual quality of stego images. The proposed algorithm is resistant to different attacks, such as differential and statistical attacks, and yields good results in terms of key sensitivity, hiding capacity, quality index, MSE, PSNR and image fidelity.
An efficient approach to secure information is critically needed at present. Cryptography remains the best approach to achieve security. On this basis, the National Institute of Standards and Technology (NIST) selected Rijndael, which is a symmetric block cipher, as the advanced encryption standard (AES). The MixColumns transformation of this cipher is the most important function within the linear unit and the major source of diffusion. Dynamic MixColumns transformation can be used to enhance the AES security. In this study, a method to enhance the AES security is developed on the basis of two methods. The first method is an extension of a previous study entitled “A novel Approach for Enhancing Security of Advance Encryption Standard using Private XOR Table and 3D chaotic regarding to Software quality Factor.” In the current study, the fixed XOR operation in AES rounds is replaced with a dual dynamic XOR table by using a 3D chaotic map. The dual dynamic XOR table is based on 4 bits; one is used for even rounds, and the other is used for odd rounds. The second method is dynamic MixColumns transformation, where the maximum distance separable (MDS) matrix of the MixColumns transformation, which is fixed and public in every round, is changed with a dynamic MDS matrix, which is private, by using a 3D chaotic map. A 3D chaotic map is used to generate secret keys. These replacements enhance the AES security, particularly the resistance against attacks. Diehard and NIST tests, entropy, correlation coefficient, and histogram are used for security analysis of the proposed method. C++ is used to implement the proposed and original algorithms. MATLAB and LINX are used for the security analysis. Results show that the proposed method is better than the original AES.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.