A comparison between slow heating to aging temperature and direct charging at aging temperature on the microstructure and mechanical properties obtained after the aging was established for the metastable beta (β) titanium alloy Ti-15V-3Cr-3Al-3Sn. The alloy was subjected to two single aging (SA) and two duplex aging (DA) conditions, with two heating rates to aging temperature: (i) low heating rate of 5 oC/min (ii) direct charging into a furnace heated to aging temperature. The microstructure analysis was carried out using Field Emission Scanning Electron Microscopy. Mechanical Testing was carried to evaluate Ultimate Tensile Strength (UTS), 0.2% Yield Strength (YS), % Elongation (%El.), % Reduction in area (%RA) and hardness. In the case of SA samples aged at 500 °C for 8 h and 500 °C for 10 h, heating rate of 5 °C/min to aging temperature resulted in a finer microstructure but did not help in achieving better strength-ductility combination compared to direct charging. Lower rate of heating allows enough dwell time in the temperature range 250-300 oC for pre-precipitation reaction to occur which aids in fine scale precipitation of alpha phase during aging. In the case of DA samples aged at 250 oC for 24 h followed by 500 oC for 8 h and 300 oC for 10 h followed by 500 oC for 10 h, no tangible difference between lower rate of heating and direct charging was observed in mechanical properties or microstructure. This is believed to be due to the pre-aging steps 250 oC/24 h or 300 oC/10h in the two DA treatments, which create finely distributed precursors thereby leaving no scope for the heating rate to play a role.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.