Crohn’s disease (CD) and ulcerative colitis (UC), the two common forms of inflammatory bowel disease (IBD), affect over 2.5 million people of European ancestry with rising prevalence in other populations1. Genome-wide association studies (GWAS) and subsequent meta-analyses of CD and UC2,3 as separate phenotypes implicated previously unsuspected mechanisms, such as autophagy4, in pathogenesis and showed that some IBD loci are shared with other inflammatory diseases5. Here we expand knowledge of relevant pathways by undertaking a meta-analysis of CD and UC genome-wide association scans, with validation of significant findings in more than 75,000 cases and controls. We identify 71 new associations, for a total of 163 IBD loci that meet genome-wide significance thresholds. Most loci contribute to both phenotypes, and both directional and balancing selection effects are evident. Many IBD loci are also implicated in other immune-mediated disorders, most notably with ankylosing spondylitis and psoriasis. We also observe striking overlap between susceptibility loci for IBD and mycobacterial infection. Gene co-expression network analysis emphasizes this relationship, with pathways shared between host responses to mycobacteria and those predisposing to IBD.
Inflammatory bowel diseases, which include Crohn’s disease and ulcerative colitis, affect several million individuals worldwide. Crohn’s disease and ulcerative colitis are complex diseases that are heterogeneous at the clinical, immunological, molecular, genetic, and microbial levels. Individual contributing factors have been the focus of extensive research. As part of the Integrative Human Microbiome Project (HMP2 or iHMP), we followed 132 subjects for one year each to generate integrated longitudinal molecular profiles of host and microbial activity during disease (up to 24 time points each; in total 2,965 stool, biopsy, and blood specimens). Here we present the results, which provide a comprehensive view of functional dysbiosis in the gut microbiome during inflammatory bowel disease activity. We demonstrate a characteristic increase in facultative anaerobes at the expense of obligate anaerobes, as well as molecular disruptions in microbial transcription (for example, among clostridia), metabolite pools (acylcarnitines, bile acids, and short-chain fatty acids), and levels of antibodies in host serum. Periods of disease activity were also marked by increases in temporal variability, with characteristic taxonomic, functional, and biochemical shifts. Finally, integrative analysis identified microbial, biochemical, and host factors central to this dysregulation. The study’s infrastructure resources, results, and data, which are available through the Inflammatory Bowel Disease Multi’omics Database ( http://ibdmdb.org ), provide the most comprehensive description to date of host and microbial activities in inflammatory bowel diseases.
Clostridium diffi cile infection (CDI) is a leading cause of hospital-associated gastrointestinal illness and places a high burden on our health-care system. Patients with CDI typically have extended lengths-of-stay in hospitals, and CDI is a frequent cause of large hospital outbreaks of disease. This guideline provides recommendations for the diagnosis and management of patients with CDI as well as for the prevention and control of outbreaks while supplementing previously published guidelines. New molecular diagnostic stool tests will likely replace current enzyme immunoassay tests. We suggest treatment of patients be stratifi ed depending on whether they have mild-to-moderate, severe, or complicated disease. Therapy with metronidazole remains the choice for mildto-moderate disease but may not be adequate for patients with severe or complicated disease. We propose a classifi cation of disease severity to guide therapy that is useful for clinicians. We review current treatment options for patients with recurrent CDI and recommendations for the control and prevention of outbreaks of CDI. Am J Gastroenterol 2013; 108:478-498; doi: 10.1038/ajg.2013 12. In patients in whom oral antibiotics cannot reach a segment of the colon, such as with Hartman's pouch, ileostomy, or colon diversion, vancomycin therapy delivered via enema should be added to treatments above until the patient improves. (Conditional recommendation, low-quality evidence)13. The use of anti-peristaltic agents to control diarrhea from confi rmed or suspected CDI should be limited or avoided, as they may obscure symptoms and precipitate complicated disease. Use of anti-peristaltic agents in the setting of CDI must always be accompanied by medical therapy for CDI. (Strong recommendation, low-quality evidence) Management of severe and complicated CDI14. Supportive care should be delivered to all patients and includes intravenous fl uid resuscitation, electrolyte replacement, and pharmacological venous thromboembolism prophylaxis. Furthermore, in the absence of ileus or signifi cant abdominal distention, oral or enteral feeding should be continued. 17. Vancomycin delivered orally (500 mg four times per day) and per rectum (500 mg in a volume of 500 ml four times a day) plus intravenous metronidazole (500 mg three times a day) is the treatment of choice for patients with complicated CDI with ileus or toxic colon and / or signifi cant abdominal distention. (Strong recommendation, low-quality evidence)18. Surgical consult should be obtained in all patients with complicated CDI. Surgical therapy should be considered in patients with any one of the following attributed to CDI: hypotension requiring vasopressor therapy; clinical signs of sepsis and organ dysfunction (renal and pulmonary); mental status changes; white blood cell count ≥ 50,000 cells / μ l, lactate ≥ 5 mmol / l; or failure to improve on medical therapy after 5 days. (Strong recommendation, moderate-quality evidence) Management of recurrent CDI (RCDI)19. The fi rst recurrence of CDI can be treated ...
Highlights d 51 cell subsets in colon mucosa of 18 ulcerative colitis and 12 healthy individuals d M-like cells, inflammatory monocytes and fibroblasts, and CD8 + IL-17 + T cells expand in disease d Oncostatin M circuit in inflammatory monocytes and fibroblasts may affect drug response d Co-expression of genes within cells allows inference of causal genes across risk loci
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.