There is an increasing role for biological markers (biomarkers) in the understanding and diagnosis of neurodegenerative disorders. The application of imaging biomarkers specifically for the in vivo investigation of neurodegenerative disorders has increased substantially over the past decades and continues to provide further benefits both to the diagnosis and understanding of these diseases. This review forms part of a series of articles which stem from the University College London/University of Gothenburg course "Biomarkers in neurodegenerative diseases". In this review, we focus on neuroimaging, specifically positron emission tomography (PET) and magnetic resonance imaging (MRI), giving an overview of the current established practices clinically and in research as well as new techniques being developed. We will also discuss the use of machine learning (ML) techniques within these fields to provide additional insights to early diagnosis and multimodal analysis.
The imidazoline binding site (IBS) is thought to be expressed in glia and implicated in the regulation of glial fibrillary acidic protein. A PET ligand for this target would be important for the investigation of neurodegenerative and neuroinflammatory diseases. C-BU99008 has previously been identified as a putative PET radioligand. Here, we present the first in vivo characterization of this PET radioligand in humans and assess its test-retest reproducibility. Fourteen healthy male volunteers underwent dynamic PET imaging with C-BU99008 and arterial sampling. Six subjects were used in a test-retest assessment, and 8 were used in a pharmacologic evaluation, undergoing a second or third heterologous competition scan with the mixed IBS/α-adrenoceptor drug idazoxan ( = 8; 20, 40, 60, and 80 mg) and the mixed irreversible monoamine oxidase type A/B inhibitor isocarboxazid ( = 4; 50 mg). Regional time-activity data were generated from arterial plasma input functions corrected for metabolites using the most appropriate model to derive the outcome measure (regional distribution volume). All image processing and kinetic analyses were performed in MIAKAT. Brain uptake of C-BU99008 was good, with reversible kinetics and a heterogeneous distribution consistent with known IBS expression. Model selection criteria indicated that the 2-tissue-compartment model was preferred. estimates were high in the striatum (105 ± 21 mL⋅cm), medium in the cingulate cortex (62 ± 10 mL⋅cm), and low in the cerebellum (41 ± 7 mL⋅cm). Test-retest reliability was reasonable. The uptake was dose-dependently reduced throughout the brain by pretreatment with idazoxan, with an average block across all regions of about 60% ( , ∼30 mL⋅cm) at the highest dose (80 mg). The median effective dose for idazoxan was 28 mg. Uptake was not blocked by pretreatment with the monoamine oxidase inhibitor isocarboxazid. C-BU99008 in human PET studies demonstrates good brain delivery, reversible kinetics, heterogeneous distribution, specific binding signal consistent with IBS distribution, and good test-retest reliability.
Alcohol use, misuse and dependence cause cognitive impairment. We propose alcohol adds to the cognitive burden seen in dementia through additional mechanisms to neurodegenerative processes or may contribute at various mechanistic points in the genesis and sustenance of AD pathology via neuroinflammation.
Abstract11C-BU99008 is a novel positron emission tomography (PET) tracer that enables selective imaging of astrocyte reactivity in vivo. To explore astrocyte reactivity associated with Alzheimer’s disease, 11 older, cognitively impaired (CI) subjects and 9 age-matched healthy controls (HC) underwent 3T magnetic resonance imaging (MRI), 18F-florbetaben and 11C-BU99008 PET. The 8 amyloid (Aβ)-positive CI subjects had higher 11C-BU99008 uptake relative to HC across the whole brain, but particularly in frontal, temporal, medial temporal and occipital lobes. Biological parametric mapping demonstrated a positive voxel-wise neuroanatomical correlation between 11C-BU99008 and 18F-florbetaben. Autoradiography using 3H-BU99008 with post-mortem Alzheimer’s brains confirmed through visual assessment that increased 3H-BU99008 binding localised with the astrocyte protein glial fibrillary acid protein and was not displaced by PiB or florbetaben. This proof-of-concept study provides direct evidence that 11C-BU99008 can measure in vivo astrocyte reactivity in people with late-life cognitive impairment and Alzheimer’s disease. Our results confirm that increased astrocyte reactivity is found particularly in cortical regions with high Aβ load. Future studies now can explore how clinical expression of disease varies with astrocyte reactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.