A critical review of the published literature regarding the computational fluid dynamics (CFD) modelling of single-phase turbulent flow in stirred tank reactors is presented. In this part of review, CFD simulations of radial flow impellers (mainly disc turbine (DT)) in a fully baffled vessel operating in a turbulent regime have been presented. Simulated results obtained with different impeller modelling approaches (impeller boundary condition, multiple reference frame, computational snap shot and the sliding mesh approaches) and different turbulence models (standard k − ε model, RNG k − ε model, the Reynolds stress model (RSM) and large eddy simulation) have been compared with the in-house laser Doppler anemometry (LDA) experimental data. In addition, recently proposed modifications to the standard k − ε models were also evaluated. The model predictions (of all the mean velocities, turbulent kinetic energy and its dissipation rate) have been compared with the experimental measurements at various locations in the tank. A discussion is presented to highlight strengths and weaknesses of currently used CFD models. A preliminary analysis of sensitivity of modelling assumptions in the k − ε models and RSM has been carried out using LES database. The quantitative comparison of exact and modelled turbulence production, transport and dissipation terms has highlighted the reasons behind the partial success of various modifications of standard k − ε model as well as RSM. The volume integral of predicted energy dissipation rate is compared with the energy input rate. Based on these results, suggestions have been made for the future work in this area.Nous présentons un examen critique de la littérature concernant la modélisation de la dynamique des fluides numérique (DFN) de l'écoulement turbulentà une phase dans les réacteursà cuve agitée. Dans cette partie de l'examen, nous présentons les simulations de DFN de turbinesà ecoulement radial (principalement des turbinesà disque (TD)) dans un réservoir entièrement cloisonné effectuées dans un régime turbulent. Les résultats des simulations obtenus grâceà différentes approches de modélisation des turbines (couche limite turbulente, méthode des référentiels multiples, snap-shot de modélisation numérique, maillage glissant) età différents modèles de turbulence (modèle standard k-e, modèle RNG k-e, modèle aux tensions de Reynolds et simulation des grandeséchelles) ontété comparés aux données expérimentales internes d'allocation de Dirichlet latente (ADL). De plus, les modifications des modèles standards k-e récemment proposées ontégalementétéévaluées. Les prédictions du modèle (de toutes les vitesses moyennes, de l'énergie cinétique turbulente et de son taux de dissipation) ontété comparées aux données expérimentales relevéesà différents endroits de la cuve. Une discussion présente les points forts et les points faibles des modèles de DFN actuellement utilisés. Une analyse préliminaire de la sensibilité des hypothèses de modélisation liées aux modèles k-e et RSM aété menée en utilis...
In the present work, the relationship between the flow pattern and blending has been investigated. The flow patterns generated by around 40 axial flow impellers have been examined. The impellers differed in blade angle, blade twist, blade width, impeller diameter, impeller location, and pumping direction. The mean-flow and turbulence characteristics generated by all of the impellers have been measured using laser doppler velocimetry (LDV). On the basis of available LDV data, the flow pattern throughout the vessel was established by employing computational fluid dynamics (CFD) and subsequently used for the simulation of the blending process. The predicted mixing times were found to be in excellent agreement with the experimental measurements. It has been shown that the dimensionless mixing time (θ̄) varies inversely with the secondary flow number of the impeller. Comparison of the impellers on the basis of equal power consumption per unit mass has shown that θmix ∝ N P 1/3 T 2/3/N QS. The present CFD model has shown the possibility of reducing the eddy diffusivity to about 20% of the actual value and still achieving the same mixing time. This reduction in eddy viscosity represents substantial savings in operating costs.
In the first part of the review, published literature regarding the CFD modelling of single-phase turbulent flow in stirred tank reactors with radial flow impellers was critically analysed. A brief overview of different turbulence models (standard k − ε model, RNG k − ε model, the Reynolds stress model and large eddy simulation) as well as impeller baffle interaction models has been presented in the previous part. This part is concerned with the review of literature regarding CFD simulation of axial flow impellers. Comprehensive simulations have been carried out using various turbulence models and the model predictions (of all the mean velocities, turbulent kinetic energy and its dissipation rate) have been compared with the experimental measurements at various locations in the tank. The strengths and weaknesses of various turbulence models for axial flow impellers is presented. The quantitative comparison of exact and modelled turbulence production, transport and dissipation terms has highlighted the reasons behind the partial success of various modifications of standard k − ε model as well as Reynolds stress model. Literature efforts on multiple impeller systems and multiphase systems have been discussed in a separate section. Based on these results, suggestions have been made for the future work in this area.Dans la première partie de l'étude, on a procédéà une analyse critique de la littérature concernant la modélisation de la dynamique des fluides numérique de l'écoulement turbulentà une phase dans les réacteursà cuve agitée dotés de turbinesàécoulement radial. Une vue d'ensemble rapide des différents modèles de turbulence (modèle standard k-e, modèle RNG k-e, modèle aux tensions de Reynolds et simulation des grandeś echelles), ainsi que des modèles d'interaction des déflecteurs de turbine, aété présentée dans la partie précédente. Cette partie se concentre sur l'analyse de la littérature concernant la simulation de DFN de turbinesàécoulement axial. Des simulations complètes ontété effectuées en utilisant plusieurs modèles de turbulence et les prédictions des modèles (de toutes les vitesses moyennes, de l'énergie cinétique turbulente et de son taux de dissipation) ontété comparées aux données expérimentales relevéesà différents endroits de la cuve. On a présenté les points forts et les points faibles de plusieurs modèles de turbulence concernant les turbinesàécoulement axial. La comparaison quantitative des données exactes et modélisées de la production, du transport et de la dissipation de la turbulence a mis enévidence les raisons qui expliquent la réussite partielle de plusieurs modifications apportées au modèle standard k-e ainsi qu'au modèle aux tensions de Reynolds. Une partie distincte est consacréeà la discussion des résultats indiqués dans la littérature concernant les systèmesà roues multiples et les systèmes multiphases. Sur la base de ces résultats, desétudesà venir dans ce domaine ontété suggérées.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.