In this paper, we propose a long short-term memory-based deep learning (DL) architecture for signal detection in uplink and downlink rate-splitting multiple access systems with multi-carrier modulation, over Nakagami-m fading and generalized Gaussian noise (GGN). The proposed DL detector completely eliminates the need for the use of successive interference cancellation (SIC), which suffers from disadvantages such as error propagation. In an orthogonal frequency division multiplexing setting, we show that the proposed DL detector outperforms the standard SIC receivers such as the least squares detector and the minimum mean-squared error receiver, and attains the performance of the optimal maximum likelihood detector, in terms of the symbol error rate (SER). Furthermore, we study the effects of the shaping parameter of GGN, hyperparameters of the DL network such as batch size and learning rate on the SER performance. INDEX TERMS Deep learning (DL), generalized Gaussian noise (GGN), long short-term memory (LSTM), non-orthogonal multiple access (NOMA), rate-splitting multiple access (RSMA).ANAGHA K. KOWSHIK (Graduate Student Member, IEEE) received the bachelor's degree (B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.