A number of biometric techniques have been proposed for personal identification in the past. Among the vision-based ones are face recognition, fingerprint recognition, iris scanning and retina scanning. Voice recognition or signature verification are the most widely known among the non-vision based ones. As signatures continue to play an important role in financial, commercial and legal transactions, truly secured authentication becomes more and more crucial. A signature by an authorized person is considered to be the "seal of approval" and remains the most preferred means of authentication. The method presented in this paper consists of image prepossessing, geometric feature extraction, neural network training with extracted features and verification. A verification stage includes applying the extracted features of test signature to a trained neural network which will classify it as a genuine or forged.
KeywordsBiometrics, error back propagation algorithm, center of mass, neural network, and normalized area of signature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.