The major goal of liver tissue engineering is to reproduce the phenotype and functions of liver cells, especially primary hepatocytes ex vivo. Several strategies have been explored in the recent past for culturing the liver cells in the most apt environment using biological scaffolds supporting hepatocyte growth and differentiation. Nanofibrous scaffolds have been widely used in the field of tissue engineering for their increased surface-to-volume ratio and increased porosity, and their close resemblance with the native tissue extracellular matrix (ECM) environment. Electrospinning is one of the most preferred techniques to produce nanofiber scaffolds. In the current review, we have discussed the various technical aspects of electrospinning that have been employed for scaffold development for different types of liver cells. We have highlighted the use of synthetic and natural electrospun polymers along with liver ECM in the fabrication of these scaffolds. We have also described novel strategies that include modifications, such as galactosylation, matrix protein incorporation, etc., in the electrospun scaffolds that have evolved to support the long-term growth and viability of the primary hepatocytes.
Hepatocytes are differentiated cells that account for 80% of the hepatic volume and perform all major functions of the liver. In vivo, after an acute insult, adult hepatocytes retain their ability to proliferate and participate in liver regeneration. However, in vitro, prolonged culture and proliferation of viable and functional primary hepatocytes have remained the major and the most challenging goal of hepatocyte-based cell therapies and liver tissue engineering. The first functional cultures of rat primary hepatocytes between two layers of collagen gel, also termed as the “sandwich cultures”, were reported in 1989. Since this study, several technical developments including choice of hydrogels, type of microenvironment, growth factors and culture conditions, mono or co-cultures of hepatocytes along with other supporting cell types have evolved for both rat and human primary hepatocytes in recent years. All these improvements have led to a substantial improvement in the number, life-span and hepatic functions of these cells in vitro for several downstream applications. In the current review, we highlight the details, limitations and prospects of different technical strategies being used in primary hepatocyte cultures. We discuss the use of newer biomaterials as scaffolds for efficient culture of primary hepatocytes. We also describe the derivation of mature hepatocytes from other cellular sources such as induced pluripotent stem cells, bone marrow stem cells and 3D liver organoids. Finally, we also explain the use of perfusion-based bioreactor systems and bioengineering strategies to support the long-term function of hepatocytes in 3D conditions.
A huge shortage of organ donors, particularly in the case of liver, has necessitated the development of alternative therapeutic strategies. Primary hepatocytes (pHCs) transplantation has made a considerable transition from bench to bedside, but the short-term viability and functionality of pHCs in in vitro limit their use for clinical applications. Different cell culture strategies are required to maintain the proliferation of pHCs for extended periods. Here, we described the formation of a hybrid scaffold based on a modified dipeptide for the culture of pHCs. First, the dipeptide (Dp), isoleucine-α,β-dehydrophenylalanine (IΔF) was synthesized, purified, and fully characterized. IΔF readily formed a highly stable hydrogel, which was also characterized by CD, TEM, and thioflavin T assay. The addition of soluble liver extracellular matrix (sLEM) to the dipeptide readily formed a hybrid scaffold that was characterized by TEM, and its mechanical strength was determined by rheology experiments. The hybrid scaffold was translucent, biocompatible, and proteolytically stable and, with its mechanical strength, closely mimicked that of the native liver. LEM 1 -Dp matrix exhibited high biocompatibility in the readily available adherent liver cell line Huh7 and primary rat hepatocyte cells (pHCs). pHCs cultured on LEM 1 -Dp matrix also maintained significantly higher cell viability and an escalated expression of markers related to the hepatocytes such as albumin as compared to that observed in cells cultured on collagen type I (Col I)-coated substrate plate (col-TCTP). Z-stacking of confocal laser microscopy's volume view clearly indicated pHCs seeded on top of the hydrogel matrix migrated toward the Z direction showing 3D growth. Our results indicated that low molecular weight dipeptide hydrogel along with sLEM can resemble biomimetic 3D-like microenvironments for improved pHCs proliferation, differentiation, and function. This hybrid scaffold is also easy to scale up, which makes it suitable for several downstream applications of hepatocytes, including drug development, pHCs transplantation, and liver regeneration.
Among the different types of mango species, Mangifera indica (MI) and Mangifera zeylanica (MZ) are well known for their therapeutic potential. MI is a pharmacologically and phytochemically diverse plant. Extracts prepared from different parts (bark, leaves, roots, seeds, flowers and fruits) of MI and major mango phytochemicals have been reported to exert a range of pharmacological effects. MZ is a plant endemic to Sri Lanka. The bark of MZ has been used in the Sri Lankan traditional medicine for the treatment of various ailments and conditions, including cancer. Recently, substantial efforts have been made to provide a scientific validation for its traditional use in the treatment of cancer. The present review article describes the pharmacological activities, including anti-inflammatory, antioxidant, anticancer, anti-microbial, anti-diabetic and anti-obesity properties of MI. Furthermore, the anticancer potential of MZ bark extracts and information on compounds isolated from MZ and their bio-activities are also described. The effects of major Mangifera compounds on epigenetic modifications have been widely studied. Therefore, the ability of Mangifera compounds to function as epigenetic drugs in the context of cancer drug discovery has become a promising area of investigation. However, an assessment of the clinical efficacy, and potential adverse and toxic effects of mango extracts is essential prior to their use in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.