Biogenic carbonate mollusc shells have the unique property of being a durable material found in many archaeological and geological sites, recording in their shell chemical composition the ambient environmental conditions during the mollusc's lifespan. In particular, mollusc shell Mg/Ca ratios have been suggested to be related to seawater temperature, although such a relationship is controversial and appears to be species-and even location-specific. This study investigates the use of Laser-Induced Breakdown Spectroscopy (LIBS) for the rapid 2 measurement of Mg/Ca profiles within Patella vulgata shells, via comparison with one established analytical technique that is most often used for this purpose, ICP-OES. LIBS offers some advantages over other spectrometric techniques, including ICP-OES, the latter requiring initial micromilling of sample powders. LIBS offers faster measurement, reduced sample preparation, easier automation and less complex and lower cost instrumentation. A high correlation is evident between LIBS and ICP-OES Mg/Ca profiles within four archaeological P. vulgata shells, as well as strong similarities between LIBS measurements made in two different areas of each P. vulgata shell (i.e. the apex and a more conventional transect along the axis of shell growth). Validation of the LIBS technique for determination of Mg/Ca profiles within P. vulgata shells has implications for archaeological studies, because a greater number of shell specimens sampled from each archaeological site and chronological level can be measured, thereby improving the statistical robustness of data interpretation and conclusions. One example archaeological application that would benefit from application of the LIBS technique is identification of the season-of-capture of marine molluscs as a food resource for prehistoric societies.
The chemical composition of mollusk shells offers information about environmental conditions present during the lifespan of the organism. Shells found in geological deposits and in many archeological sites can help to reconstruct past climatic conditions. For example, a correlation has been found between seawater temperature and the amount of some substituent elements (e.g., magnesium, strontium) in the biogenerated calcium carbonate matrix of the shell, although it is very species-specific. Here we propose the use laser-induced breakdown spectroscopy (LIBS) to estimate Mg/Ca ratios in modern specimens of the common limpet Patella vulgata. An automated setup was used to obtain a sequence of Mg/Ca ratios across a sampling path that could be compared with the seawater temperatures recorded during the organism's lifespan. Results using four shells collected in different months of the year showed a direct relationship between the Mg/Ca ratios and the seawater temperature, although the sequences also revealed small-scale (short-term) variability and an irregular growth rate. Nevertheless, it was possible to infer the season of capture and the minimum and maximum seawater temperatures from the LIBS sequences. This fact, along with the reduction in sampling and measurement time compared with other spectrometric techniques (such as inductively coupled plasma mass spectrometry [ICP-MS]), makes LIBS useful in paleoclimatic studies.
Changes in oxygen isotope ratios from shell carbonates are mainly dependent on sea surface temperature, which enables the estimation of temperatures during periods of shell growth and helps to determine the season of the year when the mollusk died. The marine topshell Phorcus lineatus (Da Costa, 1778) is commonly found in Holocene archaeological deposits of Atlantic Europe and is one of the most abundant subsistence resources utilized during the Mesolithic in northern Spain. Before applying isotopic techniques to ancient samples, calibration of the past isotopic data and its variability must be performed through the study of modern specimens to test their potential as paleoclimate proxy and their suitability for determining the collection season. Although previous studies performed in the region highlighted the existing relationship between sea surface temperatures and isotopic signatures, no systematic works have been done so far. In this paper, calibration of modern P. lineatus shells from northern Spain was carried out using δ 18 O analysis. The results showed (1) the existence of a robust inverse correlation between instrumental temperatures (T meas ) and δ 18 O shell (R 2 > 0.9), accompanied by the lack of significant dependence from δ 18 O water variations (R 2 = 0.06); (2) the existence of conditions of (or close to) isotopic equilibrium during the formation of the aragonite in the P. lineatus shells; and (3) that using mean annual δ 18 O water values, past temperatures could be calculated with a maximum uncertainty of ±3°C. Moreover, results suggested that P. lineatus generally grew without substantial slow/cessation throughout the year, reflecting the four annual seasons. Therefore, our study not only confirms the potential of oxygen isotope analysis on P. lineatus for paleoclimate reconstruction and archaeological studies highlighted in previous studies but also shows for the first time that the aragonite of those shells grew under conditions of isotopic equilibrium, opening new avenues for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.