<span lang="EN-US">The recent advances in electronics and microelectronics devices allow the development of newly low-cost monitoring tools used by peoples for health preventive purposes. Sensors used in medical equipments convert various forms of human body vital signs into electrical signals. Therefore, the healthcare monitoring systems considering non-invasive and wearable sensors with integrated communication mediums allow an efficient solution to live a comfortable home life. This paper presents the remote monitoring of human body temperature (HBT) wirelessly by means of Arduino controller with different sensors and open source internet connection. The proposed monitoring system uses an internet network via wireless fieldity (wifi) connection to be linked with online portal on smart phone or computer. The proposed system is comprised of an Arduino controller, LM-35 (S1), MLX-90614 (S2) temperature sensors and ESP-wifi shield module. The obtained result has shown that real time temperature monitoring data can be transferred to authentic observer by utilizing internet of things (IoT) applications. The findings from this research indicates that the difference of average temperature in between Sensor S1 and S2 is about 15 <sup>0</sup>C</span>
This paper demonstrates the designing parameters of a solar parabolic dish prototype for rustic areas with great solar irradiance rate availability, where have no access of electricity services or low-income people survives to buy a stove (electric or gas). The solar parabolic dish prototype intends a solution against these types of remedies and pursues solar light to work. The parabolic dish has a polished surface, where the solar radiations fall and collected at a single concentrated focal point. At this point the collected form of energy is used to derive different thermal applications like as; cooking & heating with single and dual axis schemes. This paper discusses the important stages of dual axis prototype; implementation, solar location strategy, the analysis in terms of theory, structural design & material. The dual axis prototype is implemented through the help of Arduino chipboard that is easily in maintenance, along with that this prototype is configured with anti-lock H-bridge (L298) module to overcome the control circuit complexity and AVR modules. Two rotational motors of 12V are installed on 4*4ft designed aluminum frame with a dual-axis tracking system. The jerks among trackers are also reduced with this prototype which maintains the experimental declination angle about .To finish, this paper results that parabolic solar dish tracker obtains 3.43% improved power efficiency in comparison of photovoltaic panel tracker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.