Interoperability and portability: Vendor lock-ins is always given importance whenever outsourcing is discussed. Interoperability and Portability is an open research problem in hybrid clouds for the researchers. Interoperability defines the way how communication between different clouds would occur. If we take the example of Amazon and Google, the image of Windows used is the same on both, no change is required, this is called interoperability. On the other hand, portability refers to the capability of a cloud, to move data and
Blind image super-resolution (Blind-SR) is the process of leveraging a low-resolution (LR) image, with unknown degradation, to generate its high-resolution (HR) version. Most of the existing blind SR techniques use a degradation estimator network to explicitly estimate the blur kernel to guide the SR network with the supervision of ground truth (GT) kernels. To solve this issue, it is necessary to design an implicit estimator network that can extract discriminative blur kernel representation without relying on the supervision of ground-truth blur kernels. We design a lightweight approach for blind super-resolution (Blind-SR) that estimates the blur kernel and restores the HR image based on a deep convolutional neural network (CNN) and a deep super-resolution residual convolutional generative adversarial network. Since the blur kernel for blind image SR is unknown, following the image formation model of blind super-resolution problem, we firstly introduce a neural network-based model to estimate the blur kernel. This is achieved by (i) a Super Resolver that, from a low-resolution input, generates the corresponding SR image; and (ii) an Estimator Network generating the blur kernel from the input datum. The output of both models is used in a novel loss formulation. The proposed network is end-to-end trainable. The methodology proposed is substantiated by both quantitative and qualitative experiments. Results on benchmarks demonstrate that our computationally efficient approach (12x fewer parameters than the state-of-the-art models) performs favorably with respect to existing approaches and can be used on devices with limited computational capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.