Drought is one of the most important abiotic stresses and hampers many plant physiological processes under suboptimal nitrogen (N) concentration. Seedling tolerance to drought stress is very important for optimum growth and development, however, the enhancement of plant stress tolerance through N application in cotton is not fully understood. Therefore, this study investigates the role of high N concentration in enhancing drought stress tolerance in cotton. A hydroponic experiment supplying low (0.25 mM) and high (5 mM) N concentrations, followed by 150 g L−1 polyethylene glycol (PEG)-induced stress was conducted in a growth chamber. PEG-induced drought stress inhibited seedling growth, led to oxidative stress from excessive malondialdehyde (MDA) generation, and reduced N metabolism. High N concentrations alleviated oxidative damage and stomatal limitation by increasing antioxidant enzymatic activities, leaf relative water content, and photosynthesis in cotton seedlings under drought stress. The results revealed that the ameliorative effects of high N concentration may be ascribed to the enhancement of N metabolizing enzymes and an increase in the amounts of osmoprotectants like free amino acids and total soluble protein. The present data suggest that relatively high N concentrations may contribute to drought stress tolerance in cotton through N metabolism, antioxidant capacity, and osmotic adjustment.
Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1–3% and foliar Zn at the rate of 0.1–0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha−1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.