Information and communication technologies (ICT) are one of the important determinants for the rapid growth of E-Commerce transactions all over the world. The upshot of ICT and the initiative by Malaysian government flourish online businesses in the country. The aim of this paper is to show the potential growth of ICT and the development of E-Commerce in Malaysia. The impact of internet usage, internet disclosure, internet experience and the improvement of ICT have positive implications for the information technology (IT) infrastructure and for the E-Commerce development in the country. Finding shows that the behavior of internet users for purchasing online is changing through the growth of ICT and IT infrastructure. The increasing rate of internet users, online spending and adopting of new technologies are the key drivers for the development of E-Commerce in Malaysia. Government initiatives for the development of IT infrastructure and E-Commerce have shown a positive feedback from the businesses all over the country. This study may enable the decision makers of the developing countries to adopt the initiatives and steps of the Malaysian government as a role model for the development of E-Commerce and knowledge base economy. This paper also provides the background of the ICT dependency, its influence on purchase intentions and the development of E-Commerce in Malaysia.
Aluminum nitride (AlN) has garnered much attention due to its intrinsically high thermal conductivity. However, engineering thin films of AlN with these high thermal conductivities can be challenging due to vacancies and defects that can form during the synthesis. In this work, we report on the cross-plane thermal conductivity of ultra-high-purity single-crystal AlN films with different thicknesses (∼3–22 μm) via time-domain thermoreflectance (TDTR) and steady-state thermoreflectance (SSTR) from 80 to 500 K. At room temperature, we report a thermal conductivity of ∼320 ± 42 W m–1 K–1, surpassing the values of prior measurements on AlN thin films and one of the highest cross-plane thermal conductivities of any material for films with equivalent thicknesses, surpassed only by diamond. By conducting first-principles calculations, we show that the thermal conductivity measurements on our thin films in the 250–500 K temperature range agree well with the predicted values for the bulk thermal conductivity of pure single-crystal AlN. Thus, our results demonstrate the viability of high-quality AlN films as promising candidates for the high-thermal-conductivity layers in high-power microelectronic devices. Our results also provide insight into the intrinsic thermal conductivity of thin films and the nature of phonon-boundary scattering in single-crystal epitaxially grown AlN thin films. The measured thermal conductivities in high-quality AlN thin films are found to be constant and similar to bulk AlN, regardless of the thermal penetration depth, film thickness, or laser spot size, even when these characteristic length scales are less than the mean free paths of a considerable portion of thermal phonons. Collectively, our data suggest that the intrinsic thermal conductivity of thin films with thicknesses less than the thermal phonon mean free paths is the same as bulk so long as the thermal conductivity of the film is sampled independent of the film/substrate interface.
We report on the development of AlGaN‐based deep UV light emitting diodes (LEDs) with emission wavelengths from 254 to 340 nm, focusing on the improvement of 280 nm LEDs efficiency. Under optimal device structure the UV LEDs efficiency was found to strongly depend on the AlGaN material quality. Milliwatt‐power level LEDs were demonstrated for the 254–340 nm spectral range, and for 280 nm LEDs powers reaching 2.5 mW was achieved at 20 mA DC. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Lateral-conduction, substrate-free flip-chip (SFFC) light-emitting diodes (LEDs) with peak emission at 276 nm are demonstrated for the first time. The AlGaN multiple quantum well LED structures were grown by metal–organic chemical vapor deposition (MOCVD) on thick-AlN laterally overgrown on sapphire substrates. To fabricate the SFFC LEDs, a newly-developed laser-assisted ablation process was employed to separate the substrate from the LED chips. The chips had physical dimensions of 1100×900 µm2, and were comprised of four devices each with a 100×100 µm2 junction area. Electrical and optical characterization of the devices revealed no noticeable degradation to their performance due to the laser-lift-off process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.