Biofabricated metal nanoparticles are generally biocompatible, inexpensive, and ecofriendly, therefore, are used preferably in industries, medical and material science research. Considering the importance of biofabricated materials, we isolated, characterized and identified a novel bacterial strain OS4 of Stenotrophomonas maltophilia (GenBank: JN247637.1). At neutral pH, this Gram negative bacterial strain significantly reduced hexavalent chromium, an important heavy metal contaminant found in the tannery effluents and minings. Subsequently, even at room temperature the supernatant of log phase grown culture of strain OS4 also reduced silver nitrate (AgNO3) to generate nanoparticles (AgNPs). These AgNPs were further characterized by UV–visible, Nanophox particle size analyzer, XRD, SEM and FTIR. As evident from the FTIR data, plausibly the protein components of supernatant caused the reduction of AgNO3. The cuboid and homogenous AgNPs showed a characteristic UV-visible peak at 428 nm with average size of ∼93 nm. The XRD spectra exhibited the characteristic Bragg peaks of 111, 200, 220 and 311 facets of the face centred cubic symmetry of nanoparticles suggesting that these nanoparticles were crystalline in nature. From the nanoparticle release kinetics data, the rapid release of AgNPs was correlated with the particle size and increasing surface area of the nanoparticles. A highly significant antimicrobial activity against medically important bacteria by the biofabricated AgNPs was also revealed as decline in growth of Staphylococcus aureus (91%), Escherichia coli (69%) and Serratia marcescens (66%) substantially. Additionally, different cytotoxic assays showed no toxicity of AgNPs to liver function, RBCs, splenocytes and HeLa cells, hence these particles were safe to use. Therefore, this novel bacterial strain OS4 is likely to provide broad spectrum benefits for curing chromium polluted sites, for biofabrication of AgNPs and ultimately in the nanoparticle based drug formulation for the treatment of infectious diseases.
BackgroundPhotodynamic therapy (PDT) has been found to be effective in inhibiting biofilm producing organisms. We investigated the photodynamic effect of gold nanoparticle (GNP) conjugated photosensitizers against Candida albicans biofilm. We also examined the photodynamic efficacy of photosensitizer (PS) conjugated GNPs (GNP-PS) to treat skin and oral C. albicans infection in BALB/c mice.MethodsThe biomimetically synthesized GNPs were conjugated to photosensitizers viz. methylene blue (MB) or toluidine blue O (TB). The conjugation of PSs with GNPs was characterized by spectroscopic and microscopic techniques. The efficacy of gold nanoparticle conjugates against C. albicans biofilm was demonstrated by XTT assay and microscopic studies. The therapeutic efficacy of the combination of the GNP conjugates against cutaneous C. albicans infection was examined in mouse model by enumerating residual fungal burden and histopathological studies.ResultsThe GNP-PS conjugate based PDT was found to effectively kill both C. albicans planktonic cells and biofilm populating hyphal forms. The mixture of GNPs conjugated to two different PSs significantly depleted the hyphal C. albicans burden against superficial skin and oral C. albicans infection in mice.ConclusionThe GNP-PS conjugate combination exhibits synergism in photodynamic inactivation of C. albicans. The GNP conjugate based PDT can be employed effectively in treatment of cutaneous C. albicans infections in model animals. The antibiofilm potential of PDT therapy can also be exploited in depletion of C. albicans on medical appliances such as implants and catheters etc.
Biogenic silver nanoparticles (Ag NPs) have supple platforms designed for biomedical and therapeutic intervention. Utilization of Ag NPs are preferred in the field of biomedicines and material science research because of their antioxidant, antimicrobial, and anticancerous activity along with their eco-friendly, biocompatible, and cost-effective nature. Here we present a novel fungus Piriformospora indica as an excellent source for obtaining facile and reliable Ag NPs with a high degree of consistent morphology. We demonstrated their cytotoxic property, coupled with their intrinsic characteristic that make these biogenic nanoparticles suitable for the anticancerous activity. In vitro cytotoxicity of biologically synthesized Ag NPs (BSNPs) and chemically synthesized Ag NPs (SNPs) was screened on various cancer cell lines, such as Human breast adenocarcinoma (MCF-7), Human cervical carcinoma (HeLa), Human liver hepatocellular carcinoma (HepG2) cell lines and embryonic kidney cell line (HEK-293) as normal cell lines. The antiproliferative outcome revealed that the BSNPs exhibited significant cytotoxic activity against MCF-7 followed by HeLa and HepG2 cell lines as compared to SNPs. The blend of cytotoxic properties, together with green and cost-effective characteristics make up these biogenic nanoparticles for their potential applications in cancer nanomedicine and fabrication coating of ambulatory and non-ambulatory medical devices.
Conjugation of bioactive targeting molecules to nano- or micrometer-sized drug carriers is a pivotal strategy to improve their therapeutic efficiency. Herein, we developed pH- and redox-sensitive hydrogel particles with a surface-conjugated cancer cell targeting ligand for specific tumor-targeting and controlled release of the anticancer drug doxorubicin. The poly(methacrylic acid) (PMAA) hydrogel cubes of 700 nm and 2 μm with a hepsin-targeting (IPLVVPL) surface peptide are produced through multilayer polymer assembly on sacrificial cubical mesoporous cores. Direct peptide conjugation to the disulfide-stabilized hydrogels through a thiol-amine reaction does not compromise the structural integrity, hydrophilicity, stability in serum, or pH/redox sensitivity but does affect internalization by cancer cells. The cell uptake kinetics and the ultimate extent of internalization are controlled by the cell type and hydrogel size. The peptide modification significantly promotes the uptake of the 700 nm hydrogels by hepsin-positive MCF-7 cells due to ligand-receptor recognition but has a negligible effect on the uptake of 2 μm PMAA hydrogels. The selectivity of 700 nm IPLVVPL-PMAA hydrogel cubes to hepsin-overexpressing tumor cells is further confirmed by a 3-10-fold higher particle internalization by hepsin-positive MCF-7 and SK-OV-3 compared to that of hepsin-negative PC-3 cells. This work provides a facile method to fabricate enhanced tumor-targeting carriers of submicrometer size and improves the general understanding of particle design parameters for targeted drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.