We discuss in some detail the self-similar potentials of Shabat and Spiridonov which are reflectionless and have an infinite number of bound states. We demonstrate that these self-similar potentials are in fact shape invariant potentials within the formalism of supersymmetric quantum mechanics. In particular, using a scaling ansatz for the change of parameters, we obtain a large class of new, reflectionless, shape invariant potentials of which the Shabat-Spiridonov ones are a special case.These new potentials can be viewed as q-deformations of the single soliton solution corresponding to the Rosen-Morse potential. Explicit expressions for the energy eigenvalues, eigenfunctions and transmission coefficients for these potentials are obtained. We show that these potentials can also be obtained numerically. Included as an intriguing case is a shape invariant double well potential whose supersymmetric partner potential is only a single well. Our class of exactly solvable Hamiltonians is further enlarged by examining two new directions: (i) changes of parameters which are different from the previously studied cases of translation and scaling; (ii) extending the usual concept of shape invariance in one step to a multi-step situation. These extensions can be viewed as q-deformations of the harmonic oscillator or multi-soliton solutions corresponding to the Rosen-Morse potential.(
In supersymmetric quantum mechanics, shape invariance is a sufficient condition for solvability. We show that all conventional additive shape invariant superpotentials that are independent of obey two partial differential equations. One of these is equivalent to the one-dimensional Euler equation expressing momentum conservation for inviscid fluid flow, and it is closed by the other. We solve these equations, generate the set of all conventional shape invariant superpotentials, and show that there are no others in this category. We then develop an algorithm for generating all additive shape invariant superpotentials including those that depend on explicitly.
For all quantum-mechanical potentials that are known to be exactly solvable, there are two different, and seemingly independent methods of solution. The first approach is the potential algebra of symmetry groups; the second is supersymmetric quantum mechanics, applied to shape-invariant potentials, which comprise the set of known exactly solvable potentials. Using the underlying algebraic structures of Natanzon potentials, of which the translational shape-invariant potentials are a special subset, we demonstrate the equivalence of the two methods of solution. In addition, we show that, while the algebra for the general Natanzon potential is so͑2,2͒, the subgroup so͑2,1͒ suffices for the shape invariant subset. Finally, we show that the known set of exactly solvable potentials in fact constitutes the full set of such potentials.
It is shown that the operator methods of supersymmetric quantum mechanics and the concept of shape invariance can profitably be used to derive properties of spherical harmonics in a simple way. The same operator techniques can also be applied to several problems with non-central vector and scalar potentials. As examples, we analyze the bound state spectra of an electron in a Coulomb plus an Aharonov-Bohm field and/or in the magnetic field of a Dirac monopole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.