The majority of commercial sunblock preparations utilize organic or inorganic ultraviolet (UV) filters. Despite protecting against cutaneous phototoxicity, direct cellular exposure to UV filters has raised a variety of health concerns. Here, we show that the encapsulation of padimate O (PO) - a model UV filter - in bioadhesive nanoparticles (BNPs) prevents epidermal cellular exposure to UV filters while enhancing UV protection. BNPs are readily suspended in water, facilitate adherence to the stratum corneum without subsequent intra-epidermal or follicular penetration, and their interaction with skin is water-resistant yet the particles can be removed via active towel drying. Although the sunblock based on BNPs contained less than 5 wt% of the UV-filter concentration found in commercial standards, the anti-UV effect was comparable when tested in two murine models. Moreover, the BNP-based sunblock significantly reduced double-stranded DNA breaks when compared to a commercial sunscreen formulation.
Cancer continues to be a prevalent and lethal disease, despite advances in tumor biology research and chemotherapy development. Major obstacles in cancer treatment arise from tumor heterogeneity, drug resistance, and systemic toxicities. Nanoscale delivery systems, or nanotherapies, are increasing in importance as vehicles for antineoplastic agents because of their potential for targeting and multifunctionality. We discuss the current field of cancer therapy and potential strategies for addressing obstacles in cancer treatment with nanotherapies. Specifically, we review the strategies for rationally designing nanoparticles for targeted, multimodal delivery of therapeutic agents.
SCS of patients with AML detected clones at remission that expanded into the dominant clone at relapse.• SCS provides unique information on mutation cooccurrence and clonal diversity that may enhance MRD evaluation.Although most patients with acute myeloid leukemia (AML) achieve clinical remission with induction chemotherapy, relapse rates remain high. Next-generation sequencing enables minimal/measurable residual disease (MRD) detection; however, clinical significance is limited due to difficulty differentiating between pre-leukemic clonal hematopoiesis and frankly malignant clones. Here, we investigated AML MRD using targeted single-cell sequencing (SCS) at diagnosis, remission, and relapse (n 5 10 relapsed, n 5 4 nonrelapsed), with a total of 310 737 single cells sequenced. Sequence variants were identified in 80% and 75% of remission samples for patients with and without relapse, respectively. Pre-leukemic clonal hematopoiesis clones were detected in both cohorts, and clones with multiple cooccurring mutations were observed in 50% and 0% of samples. Similar clonal richness was observed at diagnosis in both cohorts; however, decreasing clonal diversity at remission was significantly associated with longer relapse-free survival. These results show the power of SCS in investigating AML MRD and clonal evolution.
Drug resistance and toxicity are major obstacles in cancer chemotherapy. Combination therapies can overcome resistance, and synergies can minimize dosing. Polymer nanocarriers are interesting vehicles for cancer therapeutics for their delivery and tumor targeting abilities. We synthesized a multilayered polymer nanoparticle (MLNP), comprising of poly(lactic-co-glycolic acid) with surface polyethyleneimine and functional peptides, for targeted drug and gene delivery. We confirmed the particle’s ability to inhibit tumor growth through synergistic action of the drug and gene product. MLNPs achieved transfection levels similar to lipofectamine, while maintaining minimal cytotoxicity. The particles delivered camptothecin (CPT), and plasmid encoding TNF related apoptosis inducing ligand (pTRAIL) (CT MLNPs), and synergistically inhibited growth of multiple cancer cells in vitro. The synergy of co-delivering CPT and pTRAIL via CT MLNPs was confirmed using the Chou-Talalay method: the combination index (CI) values at 50% inhibition ranged between 0.31–0.53 for all cell lines. Further, co-delivery with MLNPs resulted in a 3.1–15 fold reduction in CPT and 4.7–8.0 fold reduction in pTRAIL dosing. CT MLNPs obtained significant HCT116 growth inhibition in vivo compared to monotherapy. These results support our hypothesis that MLNPs can deliver both small molecules and genetic agents towards synergistically inhibiting tumor growth.
TP53-aberrant myelodysplastic syndrome and acute myeloid leukemia have dismal outcomes. Here, we define the clinico-genomic landscape of TP53 disruptions in 40 patients and employ clonal dynamic modeling to map the mutational hierarchy against clinical outcomes. Most TP53 mutations (45.2%) localized to the L3 loop or LSH motif of the DNA-binding domain. TP53 disruptions had high co-occurrence with mutations in epigenetic regulators, spliceosome machinery, and cohesin complex and low co-occurrence with mutations in proliferative signaling genes. Ancestral and descendant TP53 mutations constituted measurable residual disease and fueled relapse. High mutant TP53 gene dosage predicted low durability of remission. The median overall survival (OS) was 280 days. Hypomethylating agent-based therapy served as an effective bridge to transplant, leading to improved median OS compared to patients who did not receive a transplant (14.7 vs. 5.1 months). OS was independent of the genomic location of TP53 disruption, which has implications for rational therapeutic design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.