Abstract-We propose a medium access control (MAC) protocol for an ad hoc network of mobile wireless terminals that are equipped with multiple directional antennas. Use of directional antennas in ad hoc networks can largely reduce the radio interference, thereby improving the packet throughput. However, the main problem of using directional antennas in such networks is due to the dynamic nature of the network caused by frequent node movements. This gives rise to problems such as locating and tracking during random channel access. The MAC protocol presented in this paper proposes a solution to these problems without the help of additional hardware. Results obtained from detailed computer simulations demonstrate the performance improvement obtained with the proposed scheme.
In this paper, we propose a CSMA-based medium access control protocol for multihop wireless networks that uses multiple channels and a dynamic channel selection method. The proposed protocol uses one control channel and AE data channels, where AE is independent of the number of nodes in the network. The source uses an exchange of control packets on the control channel to decide on the best channel to send the data packet on. Channel selection is based on maximizing the signal-to-interference plus noise ratio at the receiver. We present performance evaluations obtained from simulations that demonstrate the effectiveness of the proposed protocol.
A sensor network is a large ad hoc network of densely distributed sensors that are equipped with low power wireless transceivers. Such networks can be applied for cooperative signal detection, monitoring, and tracking, and are especially useful for applications in remote or hazardous locations. This paper addresses the problem of location discovery at the sensor nodes, which is one of the central design challenges in sensor networks. We present a new method by which a sensor node can determine its location by listening to wireless transmissions from three or more fixed beacon nodes. The proposed method is based on an angle-of-arrival estimation technique that does not increase the complexity or cost of construction of the sensor nodes. We present the performance of the proposed method obtained from computer simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.