The enterobacterium Erwinia carotovora ssp. carotovora strain 71 (hereafter Ecc71) produces extracellular enzymes such as pectate lyase isozymes (Pels), cellulase (Cel), polygalacturonase (Peh) and protease (Prt). These enzymes degrade plant cell wall components and are largely responsible for the elicitation of soft-rot diseases in plants and plant products. Ecc71 also produces HarpinEcc, the elicitor of hypersensitive reaction (HR) and the quorum-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone (OHL). OHL controls extracellular enzyme and HarpinEcc production. The levels of these enzymes, as well as the expression of hrpNEcc, the structural gene for HarpinEcc, and ohll, the gene specifying OHL synthesis, are negatively regulated by RsmaA. rsmB, formerly aepH, on the other hand, positively regulates extracellular enzyme production. 6His-RsmA recombinant protein purified from E. coli binds rsmB RNA as indicated by gel mobility shift assays. rsmB comprises 547 bp DNA, which is transcribed from a single start site immediately after a sigma70-like promoter. In Ecc71, two rsmB RNA species are detected: a full-length 479 base rsmB RNA and a 259 base rsmB' RNA. rsmB' DNA hybridizes with the 259 base and the 479 base transcripts. A 3' RNase protection assay revealed that the 259 base and the 479 base RNA species end at the same position immediately after the putative rho-independent terminator. The expression of rsmB-lacZ transcriptional fusions established that the rsmB' RNA is not produced because of the activation of an internal promoter. These data strongly suggest that the 259 base rsmB' RNA is derived by processing of the primary rsmB RNA. In Ecc71, rsmB' expression driven by the lac promoter causes overproduction of Pel, Peh, Cel and Prt, and accumulation of pel-1, peh-1, hrpNEcc and ohll transcripts. By contrast, a plasmid with the rsmB' DNA sequence deleted fails to cause overproduction of the extracellular enzymes in Ecc71. The rsmB' effect also occurs in Escherichia coli as glycogen accumulation is stimulated in the presence of rsmB'. In vivo and in vitro translation as well as mutational analysis of rsmB' have established that rsmB' RNA does not yield a translational product. Therefore, we concluded that the rsmB' RNA itself functions as the regulator. Indeed, the expression rsmB' DNA leads to neutralization of the negative effects of the RNA-binding protein, RsmA, in Ecc71 and Serratia marcescens strain SM274. We propose a model that explains how RsmA and rsmB control the expression of genes for extracellular enzymes.
The soft-rotting bacterium, Erwinia carotovora ssp. carotovora (E. c. carotovora), produces an array of extracellular enzymes (= exoenzymes), including pectate lyase (Pel), polygalacturonase (Peh), cellulase (Cel) and protease (Prt), as well as HarpinEcc, the elicitor of hypersensitive reaction (HR). The production of these exoenzymes and HarpinEcc responds to plant products and the quorum-sensing signal [N-(3-oxohexanoyl)-L-homoserine lactone; OHL] and is subject to both transcriptional and post-transcriptional regulation. hexA of E. c. carotovora strain Ecc71 (hereafter hexA71), like that of another E. c. carotovora strain, negatively controls the production of exoenzymes, OHL and virulence in E. c. carotovora strain Ecc71. In addition to exoenzymes, HexA71 negatively regulates the expression of hrpNEcc, the structural gene for HarpinEcc. Exoenzyme overproduction is abolished by OHL deficiency in a HexA- and Ohll- double mutant, indicating that HexA and OHL are components of a common regulatory pathway controlling exoenzyme production. HexA71 negatively affects RpoS, as the levels of this alternative sigma factor are higher in the HexA- mutant than in the HexA+ strain. However, a HexA- and RpoS double mutant produces higher levels of exoenzymes and transcripts of pel-1, peh-1 and celVgenes than the HexA- and RpoS+ parent. Thus, the elevated levels of RpoS protein in the HexA- mutant do not account for exoenzyme overproduction. The following evidence associates for the first time the phenotypic changes in the HexA mutant to overproduction of rsmB RNA, a global regulator of exoenzymes, HarpinEcc, OHL and secondary metabolites. Analyses of rsmB transcripts and expression of an rsmB-lacZoperon fusion in E. c. carotovora strain Ecc71 revealed that HexA71 negatively regulates transcription of rsmB. Multiple copies of hexA71+ DNA suppress various phenotypes, including exoenzyme production in E. c. carotovora strain Ecc71, and concomitantly inhibit the production of rsmB, pel-1, peh-1, celV and hrpNEcc transcripts. Multiple copies of rsmB+ DNA, on the other hand, stimulate exoenzyme production by relieving the negative effects of a chromosomal copy of hexA+. The occurrence of hexA homologues and the negative effect of the dosage of hexA71 DNA on rsmB transcripts were also detected in other E. c. carotovora strains as well as Erwinia carotovora atroseptica and Erwinia carotovora betavasculorum. Extrapolating from the findings with LrhA, the Escherichia coli homologue of HexA, and the presence of sprE homologues in E. carotovora subspecies, we propose that HexA71 controls several regulatory pathways in E. carotovora including rsmB transcription and the production of SprEEcc which, in turn, affects RpoS levels. A model is presented that integrates the findings presented here and our current knowledge of the major regulatory network that controls exoprotein production in soft-rotting Erwinia carotovora subspecies.
Our previous studies revealed that rsmA of Erwinia carotovora subsp. carotovora strain 71 suppressed the synthesis of the cell density (quorum) sensing signal N-(3-oxohexanoyl)-~-homoserine lactone, the production of extracellular enzymes and tissue macerating ability in soft-rotting Erwinia species and that homologues of this negative regulator gene were present in other Erwinia species. Northern blot data presented here demonstrate that rsmA and rsmA-like genes are also expressed in soft-rotting and non-softrotting Erwinia spp. such as E. amylovora, E. carotovora subsp. atroseptica, E. carotovora subsp. betavasculorum, E. cerotovora subsp. carotovora, E. chrysanthemi, E. henbicola and E. stewaflii. A low-copy plasmid carrying rsmA of E. carotovora subsp. carotovora strain 71 caused suppression of antibiotic production in E. carotovora subsp. betavasculorum, flagellum formation in E. carotovora subsp. carotovora, carotenoid production in E. henbicola and E. stewartii, and indigoidine production in E. chrysanthemi. In E. amylovora, rsmA of E. carotovora subsp. carotovora suppressed the elicitation of the hypersensitive reaction in tobacco leaves and the production of disease symptoms in apple shoots, in addition to repressing motility and extracellular polysaccharide production. We conclude that rsmA homologues function as global regulators of secondary metabolic pathways as well as factors controlling host interaction of Entvinia species.
The nucleotide sequence of hrpNEcc DNA, cloned from Erwinia carotovora subsp. carotovora strain Ecc71, reveals a coding region of 1,068 bp which matches the size of hrpNEcc transcripts. hrpNEcc is predicted to encode a glycine-rich protein of approximately 36 kDa. Like the elicitors of the hypersensitive reaction (HR) produced by E. chrysanthemi (HarpinEch) and E. amylovora (HarpinEa), the deduced 36-kDa protein does not possess a typical signal sequence, but it contains a putative membrane-spanning domain. In Escherichia coli strains overexpressing hrpNEcc, the 36-kDa protein has been identified as the hrpNEcc product by Western blot analysis using anti-HarpinEch antibodies. The 36-kDa protein fractionated from E. coli elicits the HR in tobacco leaves. Moreover, a HrpN- and RsmA- double mutant (RsmA = regulator of secondary metabolites) does not produce this 36-kDa protein or elicit the HR, although this strain, like the RsmA- and HrpN+ bacteria, overproduces extracellular enzymes and macerates celery petioles. These observations demonstrate that hrpNEcc encodes the elicitor of the HR, designated HarpinEcc. The levels of hrpNEcc transcripts are affected in both RsmA+ and RsmA- strains by media composition and carbon sources, although the mRNA levels are substantially higher in the RsmA- strains. The expression of hrpNEcc in Ecc71 is cell density dependent and is activated by the quorum-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone (OHL). By contrast, hrpNEcc expression in an RsmA- strain is independent of cell density, and substantial expression occurs in the absence of OHL. The effects of cultural conditions and the occurrence of putative cis-acting sequences, such as consensus sigma 54 promoters and an hrp promoter upstream of the transcriptional start site, indicate that the production of HarpinEcc in wild-type RsmA+ E. carotovora subsp. carotovora is tightly regulated. These observations, taken along with the finding that the HR is caused by RsmA- mutants but not by RsmA+ strains (Cui et al., 1996, Mol. Plant-Microbe Interact. 9:565-573), strongly support the idea that the inability of the wild-type pectolytic E. carotovora subsp. carotovora to elicit the HR is due to the lack of a significant level of HarpinEcc production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.