Lately, printed oxide electronics have advanced in the performance and low‐temperature solution processability that are required for the dawn of low‐cost flexible applications. However, some of the remaining limitations need to be surpassed without compromising the device electronic performance and operational stability. The printing of a highly stable ultra‐thin high‐κ aluminum‐oxide dielectric with a high‐throughput (50 m min−1) flexographic printing is accomplished while simultaneously demonstrating low‐temperature processing (≤200 °C). Thermal annealing is combined with low‐wavelength far‐ultraviolet exposure and the electrical, chemical, and morphological properties of the printed dielectric films are studied. The high‐κ dielectric exhibits a very low leakage‐current density (10−10 A cm−2) at 1 MV cm−1, a breakdown field higher than 1.75 MV cm−1, and a dielectric constant of 8.2 (at 1 Hz frequency). Printed indium oxide transistors are fabricated using the optimized dielectric and they achieve a mobility up to 2.83 ± 0.59 cm2 V−1 s−1, a subthreshold slope <80 mV dec−1, and a current ON/OFF ratio >106. The flexible devices reveal enhanced operational stability with a negligible shift in the electrical parameters after ageing, bias, and bending stresses. The present work lifts printed oxide thin film transistors a step closer to the flexible applications of future electronics.
Nanofibrillated cellulose (NFC) is a sustainable and renewable nanomaterial, with diverse potential applications in the paper and medical industries. As NFC consists of long fibres of high aspect ratio, we examined here whether TEMPO-(2,2,6,6-tetramethyl-piperidin-1-oxyl) oxidised NFC (length 300-1000nm, thickness 10-25nm), administrated by a single pharyngeal aspiration, could be genotoxic to mice, locally in the lungs or systemically in the bone marrow. Female C57Bl/6 mice were treated with four different doses of NFC (10, 40, 80 and 200 µg/mouse), and samples were collected 24h later. DNA damage was assessed by the comet assay in bronchoalveolar lavage (BAL) and lung cells, and chromosome damage by the bone marrow erythrocyte micronucleus assay. Inflammation was evaluated by BAL cell counts and analysis of cytokines and histopathological alterations in the lungs. A significant induction of DNA damage was observed at the two lower doses of NFC in lung cells, whereas no increase was seen in BAL cells. No effect was detected in the bone marrow micronucleus assay, either. NFC increased the recruitment of inflammatory cells to the lungs, together with a dose-dependent increase in mRNA expression of tumour necrosis factor α, interleukins 1β and 6, and chemokine (C-X-C motif) ligand 5, although there was no effect on the levels of the respective proteins. The histological analysis showed a dose-related accumulation of NFC in the bronchi, the alveoli and some in the cytoplasm of macrophages. In addition, neutrophilic accumulation in the alveolar lung space was observed with increasing dose. Our findings showed that NFC administered by pharyngeal aspiration caused an acute inflammatory response and DNA damage in the lungs, but no systemic genotoxic effect in the bone marrow. The present experimental design did not, however, allow us to determine whether the responses were transient or could persist for a longer time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.