We propose a theory of a steady circular hydraulic jump based on the shallow-water model obtained from the depth-averaged Navier–Stokes equations. The flow structure both upstream and downstream of the jump is determined by considering the flow over a plate of finite radius. The radius of the jump is found using the far-field conditions together with the jump conditions that include the effects of surface tension. We show that a steady circular hydraulic jump does not exist if the surface tension is above a certain critical value. The solution of the problem provides a basis for the hydrodynamic stability analysis of the hydraulic jump. An analogy between the hydraulic jump and a detonation wave is pointed out.
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Terms of UseArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. In analogy to gas-dynamical detonation waves, which consist of a shock with an attached exothermic reaction zone, we consider herein nonlinear traveling wave solutions to the hyperbolic ͑"inviscid"͒ continuum traffic equations. Generic existence criteria are examined in the context of the Lax entropy conditions. Our analysis naturally precludes traveling wave solutions for which the shocks travel downstream more rapidly than individual vehicles. Consistent with recent experimental observations from a periodic roadway ͓Y. Sugiyama et al., N. J. Phys. 10, 033001 ͑2008͔͒, our numerical calculations show that nonlinear traveling waves are attracting solutions, with the time evolution of the system converging toward a wave-dominated configuration. Theoretical principles are elucidated by considering examples of traffic flow on open and closed roadways. Self-sustained nonlinear waves in traffic flow
In this work we investigate the dynamics of self-sustained detonation waves that have an embedded information boundary such that the dynamics is influenced only by a finite region adjacent to the lead shock. We introduce the boundary of such a domain, which is shown to be the separatrix of the forward characteristic lines, as a generalization of the concept of a sonic locus to unsteady detonations. The concept plays a fundamental role both in steady detonations and in theories of much more frequently observed unsteady detonations. The definition has a precise mathematical form from which its relationship to known theories of detonation stability and nonlinear dynamics can be clearly identified. With a new numerical algorithm for integration of reactive Euler equations in a shock-attached frame, that we have also developed, we demonstrate the main properties of the unsteady sonic locus, such as its role as an information boundary. In addition, we introduce the so-called "nonreflecting" boundary condition at the far end of the computational domain in order to minimize the influence of the spurious reflected waves.
Fundamental diagrams of vehicular traffic flow are generally multivalued in the congested flow regime. We show that such set-valued fundamental diagrams can be constructed systematically from simple second order macroscopic traffic models, such as the classical Payne-Whitham model or the inhomogeneous Aw-Rascle-Zhang model. These second order models possess nonlinear traveling wave solutions, called jamitons, and the multi-valued parts in the fundamental diagram correspond precisely to jamiton-dominated solutions. This study shows that transitions from function-valued to set-valued parts in a fundamental diagram arise naturally in well-known second order models. As a particular consequence, these models intrinsically reproduce traffic phases.
We investigate hydrodynamic instability of a steady planar detonation wave propagating in a circular tube to three-dimensional linear perturbations, using the normal mode approach. Spinning instability is identified and its relevance to the well-known spin detonation is discussed. The neutral stability curves in the plane of heat release and activation energy exhibit bifurcations from a low-frequency to high-frequency spinning modes as the heat release is increased at fixed activation energy. With a simple Arrhenius model for the heat release rate remarkable qualitative agreement is found with experiments that vary the mixture dilution, initial pressure, and tube diameter. The analysis contributes to an explanation of the spin detonation which has essentially been absent since the discovery of the phenomenon over seventy years ago.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.