Recently, the preparation of nanodiamond-polymer composites has attracted the attention of materials scientists due to the unique properties of nanodiamonds. In this study, novel polyimide (PI)/phosphorylated nanodiamonds (PNDs) composites were prepared. PNDs were achieved from the reaction of methylphosphonic dichloride with nanodiamonds in dichloromethane. Precursor of polyimide, which is the poly(amic acid) (PAA), was successfully synthesized with 3,3 0 , 4,4 0 -benzophenonetetracarboxylic dianhydride and 4,4 0oxydianiline in the solution of N,N-dimethylformamide. Different ratios of phosphorylated nanodiamond particles were added into PAA solution and four different nanocomposite films were prepared. The amount of PNDs in the composite films was varied from 0 wt% to 3 wt%. The structure, thermal and surface properties of polyimide films were characterized by scanning electron microscopy (SEM), ATR-FTIR, thermogravimetric analysis (TGA), ultraviolet visible spectroscopy, and contact angle. SEM and FTIR results showed that the phosphorylated nanodiamond and PI/PNDs films were successfully prepared. Phosphorylated nanodiamonds were homogeneously dispersed in the polymer matrix and they displayed good compatibility. TGA results showed that the thermo-oxidative stability of PI/PNDs films was increased with the increasing amount of phosphorylated nanodiamond. POLYM. COM-POS., 37:2285-2292,
The use of biopolymers has gained priority in tissue engineering and biotechnology, both as dressing material and for enhancing treatment efficiency. There is a demand for new biopolymers designed with protease inhibitors and antimicrobials. LL‐37 is an important antimicrobial peptide in human skin and exhibits a broad spectrum of antimicrobial activity against bacteria, fungi, and viral pathogens. Using lignin which is an abundant carbohydrate polymer in nature and a polyacrylic acid, we prepared a lignin/caprolactone biodegradable film by plastifying caprolactone and polyacyrlic acid. Lignin/caprolactone biodegradable film was activated with CDI and then immobilized LL‐37 peptide. The structure was elucidated in terms of its functional groups by attenuated total reflectance‐fourier transform infrared spectroscopy (ATR‐FTIR), and the morphology of the lignin/caprolactone biodegradable film was characterized by scanning electron microscopy (SEM) before and after the immobilization process. The amount of LL‐37 immobilized was determined by ELISA method. It was found that 97% of LL‐37 peptide was successfully immobilized onto the lignin/caprolactone biodegradable film. Antimicrobial activity was determined in the lignin/caprolactone biodegradable film samples by quantitative antimicrobial activity method. According to the results, LL‐37 immobilized lignin/caprolactone biodegradable film samples were effective on test organisms; Gram‐positive Staphylococcus aureus and Gram‐negative Escherichia coli. In bio‐compatibility assays, the ability to support tissue cell integration was detected by using 3 T3 mouse fibroblasts. Samples were examined under transverse microscope, non‐immobilized sample showed a huge cellular death, whereas LL‐37 immobilized lignin/caprolactone biodegradable film had identical cellular growth with the control group. This dual functional lignin/caprolactone biodegradable film with enhanced antibacterial properties and increased tissue cell compatibility may be used to design new materials for various types of biological applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.