The dynamic behavior of bed-load sediment transport under unsteady flow conditions is experimentally and numerically investigated. A series of experiments are conducted in a rectangular flume (18 m in length, 0.80 m in width) with various triangular and trapezoidal shaped hydrographs. The flume bed of 8 cm in height consists of scraped uniform small gravel of D 50 ¼ 4:8 mm. Analysis of the experimental results showed that bed-load transport rates followed the temporal variation of the triangular and trapezoidal hydrographs with a time lag on the average of 11 and 30 s, respectively. The experimental data were also qualitatively investigated employing the unsteady-flow parameter and total flow work index. The analysis results revealed that total yield increased exponentially with the total flow work. An original expression which is based on the net acceleration concept was proposed for the unsteadiness parameter. Analysis of the results then revealed that the total yield increased exponentially with the increase in the value of the proposed unsteadiness parameter. Further analysis of the experimental results revealed that total flow work has an inverse exponential variation relation with the lag time. A onedimensional numerical model that employs the governing equations for the conservation of mass for water and sediment and the momentum was also developed to simulate the experimental results. The momentum equation was approximated by the diffusion wave approach, and the kinematic wave theory approach was employed to relate the bed sediment flux to the sediment concentration. The model successfully simulated measured sedimentographs. It predicted sediment yield, on the average, with errors of 7% and 15% of peak loads for the triangular and trapezoidal hydrograph experiments, respectively.
This study draws on drainage basin hydrography, numerical modeling and geographic information system (GIS) techniques in concert with dual frequency echo sounder data to estimate sediment thickness when initial surveys are unavailable or inaccurate. Tahtali Reservoir (Turkey), which provides 40% of water supply to the city of Izmir, was selected as the study site. Deposition patterns within the whole lake were estimated with a 3-D hydrodynamic and sediment transport model applied to Tahtali Reservoir. The numerical model simulated lake response to wind forcing and inflows and/or outflows and was used to describe sediment deposition patterns resulting from the erosion of soils quantified by the implementation of Universal Soil Loss Equation (USLE) to the whole watershed. Surveying of the lake via dual frequency (28/200 kHz) echo sounder system revealed the current bathymetry, and sediment thickness was estimated from the difference of depths measured by the dual frequency sounder along surveyed transects. These results were compared to the modeled sedimentation thicknesses and to preliminary estimates of watershed sediment yield estimated by USLE. Results of this study can be used for further water quality studies and for long term management plans.TÜBİTAK project No: 104Y323 and European Commission project No: 28292 (RESTRAT
In this study, two experiments were conducted in a 90<sup>0</sup> water intake to study 3D flow patterns and sediment distribution using submerged vanes under sediment feeding and live-bed conditions. One column three vanes were installed at a 20<sup>0</sup> angle maintaining for a water discharge ratio of q<sub>r</sub> ~ 0.1. Three-dimensional mean and turbulent velocity components of flow in 90<sup>0</sup> channel intake were measured by Acoustic Doppler Velocimetry (ADV). Flow characteristics of the intake structure area with no vanes are compared with those condition. Results showed that three vanes with single column reduced the amount of sediment by 20% in the intake diversion. In the downstream corner of the intake, high velocities were measured where scouring occurred. The vanes affected the intensity of secondary flow, turbulence energy, flow separation, and moved sediment deposition downstream of the main channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.