An license plate recognition system (LPRS) generally provides control and security. These systems are created using methods such as artificial intelligence, machine learning, artificial neural networks (ANN), deep learning, fuzzy logic, expert systems, and image processing. This study aims to create an LPRS using artificial intelligence and image processing techniques. The prepared system is for rectangular-sized plates. An LPRS consists of 3 main stages. The first stage is to detect the plate region. At this stage, converting to grayscale, bilateral filtering, canny filtering, and contour were applied to vehicle images. The second stage is to crop the plate region. In the second stage, the masking method was employed. The pytesseract algorithm was used to recognize license plate characters in the last stage. To create the system, Raspberry Pi 4 Single-Board Computer (SBC) was used for hardware; python programming language was utilized for software. The results showed that the system worked successfully at the rate of 100% in the first two stages and at the rate of 91.82% in the last stage. The results suggest that the system works successfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.