S U M M A R YA vertical array of accelerometers was installed in Ataköy (western Istanbul) with the longterm aim of improving our understanding of in situ soil behaviour, to assess the modelling and parametric uncertainties associated with the employed methodologies for strong-motion site-response analysis, and for shallow geological investigations. Geotechnical and geophysical investigations were carried out to define the subsoil structure at the selected site. Data associated with 10 earthquakes (2.7 < M < 4.3) collected during the first months of operation of the array were used to image the upgoing and downgoing waves by deconvolution of waveforms recorded at different depths. Results have shown that the velocity of propagation of the imaged upgoing and downgoing waves in the borehole is consistent with that of S or P waves, depending on the component of ground acceleration analysed but independent of the chosen signal window. In particular, an excellent agreement was found between the observed upgoing and downgoing wave traveltimes and the ones calculated using a model derived by seismic noise analysis of array data. The presence of a smaller pulse on the waveforms obtained by deconvolution of the horizontal components suggests both internal S-wave reflection and S-to-P mode conversion, as well as a not normal incidence of the wavefield. The presence of a pulse propagating with S-wave velocity in the uppermost 25 m in the waveforms obtained by the deconvolution of the vertical components suggests P-to-S mode conversion. These evidences imply that, even when site amplification is mainly related to 1-D effects, the standard practice in engineering seismology of deconvolving the surface recording down to the bedrock using an approximate S-wave transfer function (generally valid for vertical incidence of SH waves) might lead to errors in the estimation of the input ground motion required in engineering calculations. Finally, downgoing waves with significant amplitudes were found down to 70 m and even to 140 m depth. This result provides a warning about the use of shallow borehole recordings as input for the numerical simulation of ground motion and for the derivation of ground motion prediction relationships.
S U M M A R YThe estimation of shear wave velocity and attenuation in near-surface geology is of primary importance in engineering seismology. In fact, their knowledge is essential for site response studies when preparing improved seismic hazard scenarios. In this study, we propose two approaches for estimating the average shear wave quality factor Qs by using recordings of a vertical array of accelerometers. The methods are mainly based on the deconvolution of the wavefield recorded in a borehole with that recorded at the surface.The first method requires the Fourier transform of the deconvolved wavefield to be fitted with a theoretical transfer function valid for the vertical or nearly vertical (in the case at hand up to 30 • incidence angle) propagation of S waves. The second method is based on the spectral fitting of the Fourier transform of only the acausal part of the deconvolved wavefield with a theoretical transfer function.Both methods can be applied without any prior knowledge of the subsoil structure (since they are based on empirical data analysis) and do not require a precise knowledge of the azimuthal orientation of the sensors in the boreholes (which is seldom available). First, we describe the theoretical framework of the proposed methodologies for Qs estimation, which are based on the assumption that the structure in the borehole is weakly heterogeneous in the vertical direction (i.e. no large impedance contrast exists between the borehole sensor and the surface). Second, by using synthetic accelerograms, we verify that in a realistic subsoil structure, the assumption of vertical homogeneity can hold and we investigate the robustness and the suitability of the proposed methods. Finally, only the method that was shown to provide the more stable results, based on fitting the borehole-to-surface spectral ratio with a theoretical function, is applied to earthquakes signals recorded by a vertical array of accelerometers installed in Ataköy (western Istanbul). Results show that using borehole data provides a fair and robust estimate of an average Qs (of about 30, 46 and 99 for the 0-50, 0-70, 0-140 m depth ranges, respectively) that can be used for numerical simulations of ground motion.
Scenario-based earthquake simulations at regional scales hold the promise in advancing the state-of-the-art in seismic risk assessment studies. In this study, a computational workflow is presented that combines (i) a broadband Green's function-based fault-rupture and ground motion simulation-herein carried out using the "UCSB (University of California at Santa Barbara) method", (ii) a three-dimensional physics-based regional-scale wave propagation simulation that is resolved at max = 11.2 Hz, and (iii) a local soil-foundation-structure finite element analysis model. These models are interfaced with each other using the domain reduction method. The innermost local model-implemented in ABAQUS-is additionally enveloped with perfectly matched layer boundaries that absorb outbound waves scattered by the structures contained within it. The intermediate wave propagation simulation is carried out using Hercules, which is an explicit time-stepping finite element code that is developed and licensed by the CMU-QUAKE group. The devised workflow is applied to a 80 × 40 × 40 km 3 region on the European side of Istanbul, which was modeled using detailed soil stratigraphy data and realistic fault rupture properties, which are available from prior microzonation surveys and earthquake scenario studies. The innermost local model comprises a chevron-braced steel frame building supported by a shallow foundation slab, which, in turn, rests atop a three-dimensional soil domain. To demonstrate the utility of the workflow, results obtained using various simplified soil-structure interaction analysis techniques are compared with those from the detailed direct model. While the aforementioned demonstration has a limited scope, the devised workflow can be used in a multitude of ways, for example, to examine the effects of shallow-layer soil nonlinearities and surface topography, to devise site-and structure-specific seismic fragilities, and for calibrating regional loss models, to name a few.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.