BackgroundEquine coronavirus (ECoV) is associated with clinical disease in adult horses. Outbreaks are associated with a low case fatality rate and a small number of animals with signs of encephalopathic disease are described.ObjectivesThe aim of this study is to describe the epidemiological and clinical features of two outbreaks of ECoV infection that were associated with an high case fatality rate.Animals14 miniature horses and 1 miniature donkey testing fecal positive for ECoV from two related disease outbreaks.MethodsRetrospective study describing the epidemiological findings, clinicopathological findings, and fecal viral load from affected horses.ResultsIn EcoV positive horses, 27% (4/15) of the animals died or were euthanized. Severe hyperammonemia (677 μmol/L, reference range ≤60 μmol/L) was identified in one animal with signs of encephalopathic disease that subsequently died. Fecal viral load (ECoV genome equivalents per gram of feces) was significantly higher in the nonsurvivors compared to animals that survived (P = .02).Conclusions and Clinical ImportanceEquine coronavirus had a higher case fatality rate in this group of miniature horses than previously reported in other outbreaks of varying breeds. Hyperammonemia could contribute to signs of encephalopathic disease, and the fecal viral load might be of prognostic value in affected horses.
Fatty liver hemorrhagic syndrome, characterized by sudden death in overconditioned hens due to hepatic rupture and hemorrhage, is one of the leading noninfectious idiopathic causes of mortality in backyard chickens. Nutritional, genetic, environmental, and hormonal factors, or combinations of these, have been proposed yet not proven as the underlying cause. In an attempt to characterize the hepatic changes leading to the syndrome, this retrospective case study examined 76 backyard chickens that were diagnosed with fatty liver hemorrhagic syndrome between January 2007 and September 2012 and presented for necropsy to the diagnostic laboratory of the California Animal Health and Food Safety Laboratory System. A majority of the birds were female (99%), obese (97.5%), and in active lay (69.7%). Livers were examined histologically, and the degree of hepatocellular vacuolation (lipidosis), the reticular stromal architecture, the presence of collagenous connective tissue, and vascular wall changes were evaluated and graded using hematoxylin and eosin, Gomori's reticulin, oil red O, Masson's trichrome, and Verhoeff-Van Gieson stains. Interestingly, there was no correlation between lipidosis and reticulin grades; hepatocellular lipidosis was absent in 22% of the cases and mild in 26% of the cases. Additionally, there was evidence of repeated bouts of intraparenchymal hemorrhage before the acute "bleed-out" in 35.5% of the cases. These data are not supportive of the previously proposed causes and provide a framework for future studies to elucidate the pathogenesis of this condition. Furthermore, the data shown in this study support hemorrhagic liver syndrome as a more accurate name, as hepatic lipidosis is absent in a significant proportion of ruptured livers.
Inflammasomes are major components of the innate immune system and are responsible for detecting various microbial and environmental danger signals. Upon invasion of Lewis rat macrophages, the parasite rapidly activates the NLRP1 inflammasome, resulting in pyroptosis and elimination of the parasite’s replication niche. The work reported here revealed that Toxoplasma GRA35, GRA42, and GRA43 are required for induction of Lewis rat macrophage pyroptosis. GRA42 and GRA43 mediate the correct localization of other GRAs, including GRA35, to the parasitophorous vacuole membrane. These three GRAs were also found to be important for parasite in vivo fitness in a Toxoplasma-susceptible rat strain, independently of their role in NLRP1 inflammasome activation, suggesting that they perform other important functions. Thus, this study identified three GRAs that mediate the induction of Lewis rat macrophage pyroptosis and are required for pathogenesis of the parasite.
Equine coronavirus (ECoV) is a Betacoronavirus recently associated clinically and epidemiologically with emerging outbreaks of pyrogenic, enteric, and/or neurologic disease in horses in the United States, Japan, and Europe. We describe the pathologic, immunohistochemical, ultrastructural, and molecular findings in 2 horses and 1 donkey that succumbed to natural infection with ECoV. One horse and the donkey (case Nos. 1, 3) had severe diffuse necrotizing enteritis with marked villous attenuation, epithelial cell necrosis at the tips of the villi, neutrophilic and fibrinous extravasation into the small intestinal lumen (pseudomembrane formation), as well as crypt necrosis, microthrombosis, and hemorrhage. The other horse (case No. 2) had hyperammonemic encephalopathy with Alzheimer type II astrocytosis throughout the cerebral cortex. ECoV was detected by quantitative polymerase chain reaction in small intestinal tissue, contents, and/or feces, and coronavirus antigen was detected by immunohistochemistry in the small intestine in all cases. Coronavirus-like particles characterized by spherical, moderately electron lucent, enveloped virions with distinct peplomer-like structures projecting from the surface were detected by negatively stained transmission electron microscopy in small intestine in case No. 1, and transmission electron microscopy of fixed small intestinal tissue from the same case revealed similar 85- to 100-nm intracytoplasmic particles located in vacuoles and free in the cytoplasm of unidentified (presumably epithelial) cells. Sequence comparison showed 97.9% to 99.0% sequence identity with the ECoV-NC99 and Tokachi09 strains. All together, these results indicate that ECoV is associated with necrotizing enteritis and hyperammonemic encephalopathy in equids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.