Tüm Dünya'yı etkisi altına alan Covid-19 salgını, Twitter sosyal medya platformunda salgın ile ilgili konularda büyük veri kümelerinin oluşumuna sebep olmuştur. Oluşan bu veri kümeleri, toplumun konuya yaklaşımını belirlemek adına veri analiz çalışmaları için zengin bir veri kaynağı teşkil etmektedir. Bu çalışmada, Covid-19 salgını ile ilgili Twitter paylaşımları üzerinde R programlama dili kullanılarak çeşitli veri analizleri yapılmıştır. Bu uygulamalar genel olarak metin analizi, ağ analizi ve duygu analizi şeklinde sınıflandırılabilir. Çalışmada, "#covid19", "#covid -19" ve "#coronavirus" etiketlerine sahip İngilizce dilinde 09.12.2020 ve 20.03.2021 tarihleri arasında yapılan 110.883 paylaşım toplanarak temizlenmiştir. Çalışma kapsamında yapılan analizlerd e, konu ile ilgili en çok paylaşım yapılan kullanıcı lokasyon bilgileri, birlikte en sık kullanılan kelime ve kelime çiftleri ile olumlu ve olumsuz kelimeler tespit edilmişt ir. Yapılan çalışmanın, toplumun sosyal medyada paylaştığı çeşitli fikir ve düşünce lerinin hangi yönde olduğunu görmek açısından önemli olduğu düşünülmektedir. Elde edilen sonuçlar incelendiğinde, insanların duygu ve düşüncelerinin yanı sıra, ihtiyaç ve beklentilerini de sosyal ağlar aracılığıyla dile getirdiği görülmüştür. Ayrıca Twitte r sosyal medya platformunun toplumu etkileyen güncel olaylar hakkında anında bilgi almak amacıyla kullanılabilecek olan en önemli sosyal ağlardan biri olduğu bir kez daha anlaşılmıştır.
Development of an artificial neural network for earthquake intensity estimation Network structure optimization by considering different network designs Determining an appropriate training algorithm for the determined network designIn this study, using a multi-layer feed-forward artificial neural network, we estimate earthquake intensity based on the magnitude and the depth of an earthquake and the distance of the disaster victims from the epicenter of the earthquake. In this context, we use significant earthquakes database of the United States Geological Survey as the inputs of the artificial neural network. We first determine an appropriate network design by estimating earthquake intensity with different artificial neural network designs and then the best training algorithm for the appropriate network design by evaluating different algorithms for the corresponding network design. Figure A. Artificial neural network designPurpose: We aim to estimate the earthquake intensity via an artificial neural network. Theory and Methods:We obtain significant earthquakes data from the database of the United States Geological Survey. An artificial neural network is developed using the MATLAB Neural Network Toolbox. We first determine an appropriate network design by estimating earthquake intensity with different artificial neural network designs and then the best training algorithm for the appropriate network design by evaluating different algorithms for the corresponding network design. Results:In terms of the average performance parameters, the network structure with two hidden layers and five and ten hidden neurons in each respective layer is determined as the most appropriate design. We observe the best results in terms of performance parameters by using the Levenberg-Marquardt training algorithm with Bayesian Regularization for the corresponding network structure. Conclusion:Earthquake intensity estimation is critical in predicting the impact that will occur after a disaster.In this study, we estimate earthquake intensity via an artificial neural network. In future studies, associated with earthquake intensity, we can estimate the number of casualties, damages to the buildings, economic loss and so on. Integrating earthquake intensity estimation into other disaster operation management studies may be another future study direction.
Öğrenci-Proje Atama (ÖPA), genel olarak, çeşitli kriterlerin dikkate alınmasıyla öğrenci-proje takımlarının oluşturmasını ve bu takımlara projelerin atanmasını içeren bir problem olarak tanımlanabilir. Bu çalışmada, problemin çözümü için üç aşamadan oluşan bir yaklaşım önerilmektedir. Yakın tarihli başka bir çalışmada geliştirilmiş olan bir 0-1 tamsayılı-hedef programlama formülasyonundan adapte edilmiş olan matematiksel programlama modeliyle, çalışmanın ilk aşamasında çeşitli kriterler dikkate alınarak öğrenci-proje gruplarının oluşturulması gerçekleştirilmektedir. Sonraki aşamada, grup-proje eşleştirmeleri gerçekleştirilmeden önce, oluşturulan grupların proje tercihleri için grup üyelerinin farklı bakış açılarını yansıtan grup kararları belirlenmektedir. Son olarak, öğrenci-proje gruplarının proje tercihlerine yönelik olarak oluşturulan grup kararları kullanılarak bir 0-1 tamsayılı program ile grup-proje atamaları gerçekleştirilmektedir. Çalışmanın literatüre olan katkısı, önerilen üç aşamalı yaklaşımla, grup kararlarının dikkate alınarak ÖPA probleminin çözülmesi şeklinde özetlenebilir. Önerilen yaklaşım, akademik bir kurumdaki gerçek bir ÖPA problemine uygulanmıştır. Elde edilen sonuçlar, ilgili literatürde bulunan diğer atama yaklaşımlarının sonuçları ile çeşitli performans parametreleri açısından karşılaştırılmıştır.
It may be critical for drivers to have information about the occupancy rates of the parking spaces around their destination in order to reduce the traffic density, a non-negligible part of which caused by the trips to find an available parking space. In this study, we predict parking occupancy rates (and thus, space availability) using three different techniques: (i) auto-regressive integrated moving average model, (ii) seasonal auto-regressive integrated moving average model and (iii) neural networks. In the implementation phase, we use the data set of the on-street parking spaces of the well-known “SFpark” project carried out in San Francisco. We take into account not only the past occupancy rates of parking spaces, but also exogenous variables that affect the corresponding occupancy rates as day type and time period of the day. We make predictions with different model structures of each of the considered methods for each parking space with different parking occupancy patterns in the data set and then compare the results to find the best model design for each parking space. We also, evaluate the results in terms of the superiority of the methods over each other and note that the performance of neural networks is better than those of the other approaches in terms of the mean squared errors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.