The discovery or development of thermoalkalophilic lipases that show high levels of catalytic activity in organic solvents would have important industrial ramifications. However, this goal is yet to be achieved because organic solvents induce structural changes in lipases that suppress their catalytic abilities. A deep understanding of these structural changes to lipases in the presence of organic solvents is required before strategies can be devised to stop them from occurring. In this work, we investigated the effects of an organic reaction medium, toluene, on the structure of the Bacillus thermocatenulatus lipase BTL2 using MD simulation. The main aims were to identify the regions of the protein that are particularly sensitive to the presence of an organic solvent, and how the presence of a hydrophobic medium affects the overall stability of the enzyme. Upon analyzing how the behavior of the enzyme differed in aqueous and hydrophobic media, it was found that many significant zones of the protein suffer in the presence of an organic solvent, which increases the rigidity of the system. This was readily apparent when we investigated important noncovalent interactions (salt bridges) and probed how distances between the atoms of the catalytic triad Ser114, Asp318, and His359 change in the presence of toluene. Moreover, the high tendency for the system to destabilize in toluene was explained by the results of FoldX calculations. Calculations showed that the addition of a small amount of water to the hydrophobic reaction environment should restore the required flexibility of BTL2. The insights gained from the analysis of our simulations allowed us to propose a modification of BTL2, the G116P mutation, that should result in the structural behavior of BTL2 in organic solvent being closer to that of BTL2 in water.
BackgroundAutosomal recessive nail dysplasia is characterized by thick and hard nails with a very slow growth on the hands and feet. Mutations in FZD6 gene were found to be associated with autosomal recessive nail dysplasia in 2011. Presently, only seven mutations have been reported in FZD6 gene; five mutations are clustered in the C-terminus, one is at the seventh transmembrane domain, and another is at the very beginning of third extracellular loop.MethodsWhole exome sequencing (WES) was applied to the index case, her one affected sister and her healthy consanguineous parents. The mutation was verified via Sanger sequencing. Molecular dynamics simulations of the predicted structures of native and mutant proteins were compared to gain insight into the pathogenicity mechanism of the mutation.ResultsHere, we report a homozygous 8 bp deletion mutation, p.Gly559Aspfs*16; c.1676_1683delGAACCAGC, in FZD6 gene which causes a frameshift and creates a premature stop codon at position 16 of the new reading frame. Our molecular dynamics calculations predict that the pathogenicity of this frameshift mutation may be caused by the change in entropy of the protein with negative manner, disturbing the C-terminal domain structure, and hence interaction partners of FZD6.ConclusionWe identified a homozygous deletion mutation in FZD6 in a consanguineous Turkish family with nail dysplasia. We also provide a molecular mechanism about the effects of the deletion on the protein structure and its possible motions. This study provides a pathogenicity mechanism for this mutation in nail dysplasia for the first time.Electronic supplementary materialThe online version of this article (10.1186/s12881-019-0746-6) contains supplementary material, which is available to authorized users.
Utilizing plant-based materials as a biofuel source is an increasingly popular attempt to redesign the global energy cycle. This endeavour underlines the potential of cellulase enzymes for green energy production and requires the structural and functional engineering of natural enzymes to enhance their utilization. In this work, we aimed to engineer enzymatic and functional properties of Endoglucanase I (EGI) by swapping the Ala43-Gly83 region of Cellobiohydrolase I (CBHI) from Trichoderma reesei. Herein, we report the enhanced enzymatic activity and improved thermal stability of the engineered enzyme, called EGI_swapped, compared to EGI. The difference in the enzymatic activity profile of EGI_swapped and the EGI enzymes became more pronounced upon increasing metal-ion concentrations in the reaction media. Notably, the engineered enzyme retained a considerable level of enzymatic activity after thermal incubation for 90 min at 70 °C while EGI completely lost its enzymatic activity. Circular Dichroism spectroscopy studies revealed distinctive conformational and thermal susceptibility differences between EGI_swapped and EGI enzymes, confirming the improved structural integrity of the swapped enzyme. This study highlights the importance of swapping the metal-ion coordination region in the engineering of EGI enzyme for enhanced structural and thermal stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.