Passive multistatic radars have gained a lot of interest in recent years as they offer many benefits contrary to conventional radars. Here in this research, our aim is detection of target in a passive multistatic radar system. The system contains a single transmitter and multiple spatially distributed receivers comprised of both the surveillance and reference antennas. The system consists of two main parts: 1. Local receiver, and 2. Fusion center. Each local receiver detects the signal, processes it, and passes the information to the fusion center for final detection. To take the advantage of spatial diversity, we apply major fusion techniques consisting of hard fusion and soft fusion for the case of multistatic passive radars. Hard fusion techniques are analyzed for the case of different local radar detectors. In terms of soft fusion, a blind technique called equal gain soft fusion technique with random matrix theory-based local detector is analytically and theoretically analyzed under null hypothesis along with the calculation of detection threshold. Furthermore, six novel random matrix theory-based soft fusion techniques are proposed. All the techniques are blind in nature and hence do not require any knowledge of transmitted signal or channel information. Simulation results illustrate that proposed fusion techniques increase detection performance to a reasonable extent compared to other blind fusion techniques.
Passive bistatic radar research is essential for accurate 3D target tracking, especially in the presence of missing or low-quality bearing information. Traditional extended Kalman filter (EKF) methods often introduce bias in such scenarios. To overcome this limitation, we propose employing the unscented Kalman filter (UKF) for handling the nonlinearities in 3D tracking, utilizing range and range-rate measurements. Additionally, we incorporate the probabilistic data association (PDA) algorithm with the UKF to handle cluttered environments. Through extensive simulations, we demonstrate a successful implementation of the UKF-PDA framework, showing that the proposed method effectively reduces bias and significantly advances tracking capabilities in passive bistatic radars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.