Power‐free shape retention enables soft pneumatic robots to reduce energy cost and avoid unexpected collapse due to burst or puncture. Existing strategies for pneumatic actuation cannot attain motion locking for trajectories combining extension and bending, one of the most common modes of operation. Here, a design paradigm is introduced for soft pneumatic actuators to enable zero‐power locking for shape retention in both extension and bending. The underpinning mechanism is the integration of a pneumatic transmitter and a multistable guider, which are programmed to interact for balanced load transfer, flexural and extension steering, and progressive snapping leading to state locking. Through theory, simulations, and experiments on proof‐of‐concept actuators, the existence of four distinct regimes of deformation is unveiled, where the constituents first interact during inflation to attain locking in extension and bending, and then cooperate under vacuum to enable fully reversible functionality. Finally, the design paradigm is demonstrated to realize a soft robotic arm capable to lock at desired curvature states at zero‐power, and a gripper that safely operates with puncture resistance to grasp and hold objects of various shapes and consistency. The study promises further development for zero‐power soft robots endowed with multiple deformation modes, sequential deployment, and tunable multistability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.