Cyan fluorescent proteins (CFPs) are widely used as FRET donors in genetically encoded biosensors for live cell imaging. Recently, cyan variants with greatly improved fluorescence quantum yields have been developed by large scale random mutagenesis. We show that the introduction of only two mutations, T65S and H148G, is able to confer equivalent performances on the popular form ECFP, leading to Aquamarine (QY = 0.89, τ(f) = 4.12 ns). Besides an impressive pH stability (pK(1/2) = 3.3), Aquamarine shows a very low general sensitivity to its environment, and undetectable photoswitching reactions. Aquamarine gives efficient and bright expression in different mammalian cell systems, with a long and single exponential intracellular fluorescence lifetime mostly insensitive to the fusion or the subcellular location of the protein. Aquamarine was also able to advantageously replace the CFP donor in the FRET biosensor AKAR for ratiometric measurements of protein kinase A activity. The performances of Aquamarine show that only two rounds of straightforward single point mutagenesis can be a quick and efficient way to optimize the donor properties in FRET-based biosensors.
Cyan fluorescent proteins (CFP) derived from Aequorea victoria GFP, carrying a tryptophan-based chromophore, are widely used as FRET donors in live cell fluorescence imaging experiments. Recently, several CFP variants with near-ultimate photophysical performances were obtained through a mix of site-directed and large scale random mutagenesis. To understand the structural bases of these improvements, we have studied more specifically the consequences of the single-site T65S mutation. We find that all CFP variants carrying the T65S mutation not only display an increased fluorescence quantum yield and a simpler fluorescence emission decay, but also show an improved pH stability and strongly reduced reversible photoswitching reactions. Most prominently, the Cerulean-T65S variant reaches performances nearly equivalent to those of mTurquoise, with QY = 0.84, an almost pure single exponential fluorescence decay and an outstanding stability in the acid pH range (pK1/2 = 3.6). From the detailed examination of crystallographic structures of different CFPs and GFPs, we conclude that these improvements stem from a shift in the thermodynamic balance between two well defined configurations of the residue 65 hydroxyl. These two configurations differ in their relative stabilization of a rigid chromophore, as well as in relaying the effects of Glu222 protonation at acid pHs. Our results suggest a simple method to greatly improve numerous FRET reporters used in cell imaging, and bring novel insights into the general structure-photophysics relationships of fluorescent proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.