Fatty acid composition of peanut seed oil in four varieties cultivated in Tunisia showed that linoleic (C18:2), oleic (C18:1) and palmitic (C16) acids account for more than 84% for Chounfakhi and Massriya and for more than 85% of the total fatty acids of Trabilsia and Sinya seed oil respectively. Seed oil contents were signifi cantly diff erent (P ≤ 0.05) and did not exceed 48%. The study of total phenolics revealed that Chounfakhi contained more total phenolics (2.1 mg GAE/g DW), followed by the Massriya and Sinya cultivars (1.35 mg GAE/g DW for each); Trabilsia presented the lowest total phenolic content with 1 mg GAE/g DW. Considerable antiradical ability was found, especially in the Trabilsia peanut seed cultivar (IC50 = 1550 μg/ml), the Massriya and Sinya cultivars had, respectively, 720 and 820 mg/ml IC50. In the Massriya variety the sterol fraction showed antibacterial activity against Listeria ivanovii, Listeria inocua, Pseudomonas aeruginosa, Staphylococus aureus, Enterococcus hirae and Bacillus cereus.
To investigate the nutritional value of the marine micro-alga Isochrysis galbana Tahitian Isochrysis strain (T.iso) as an alternative feed for aquaculture during culture age, its biochemical composition was studied under autotrophic and controlled culture conditions at different growth stages: exponential phase, early and late stationary phases and decay phase. Analysis showed that C14:0, C16:0, C16:1, C18:4 (n-3) and C22:6 (n-3) were the most abundant fatty acids in this alga at different growth stages. The highest values of monounsaturated fatty acids were recorded at the late stationary and the decay phases. However, the highest levels of polyunsaturated fatty acids were observed at the early stationary phase. At all growth stages, I. galbana (T.iso) contained arabinose, xylose, mannose, galactose and glucose. Glucose represented the main sugar, and its content per dry alga biomass weight increased with increasing age of the culture and reached about fourfold in the decay phase. The maximum protein content was also observed during this last phase.
Microalgae could be of importance for future biodiesel production as an alternative for a third generation of biofuels. To select the most appropriate strain for biodiesel production, three microalgae species, namely Isochrysis sp., Nannochloropsis maritima and Tetraselmis sp., isolated from Tunisian coast, were biochemically characterized. Initially, gas chromatography analysis showed that Isochrysis sp. and N. maritima contained 5- and 10-fold total fatty acids, respectively, more than Tetraselmis sp. Then, the two microalgae Isochrysis sp. and N. maritima were subject to random mutagenesis using ultraviolet-C radiation. Subsequently, a total of 18 mutants were obtained from both species. The neutral lipid evaluation on said 18 mutants allowed the retention of only 7 to further fatty acid characterization. Finally, gas chromatography revealed that the mutant 5c Isochrysis sp. was characterized by a high level of saturated fatty acids (52.3%), higher amount of monounsaturated fatty acids (29.3%), lower level of polyunsaturated fatty acids (18.4%) and a significant 1.3-fold increase in its C16-C18 content compared to the wild-type strain, which would make it an interesting candidate for biofuel production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.