The antibacterial activity of the essential oils extracted from Thymus capitatus and Thymus algeriensis was studied against Escherichia coli, Salmonella typhimurium, Staphylococcus aureus, and Pseudomonas aeruginosa. In this study, the disk method showed that T. capitatus EO has a strong antibacterial effect, whereas T. algeriensis EO showed a moderate activity. In addition, the inhibitory effect of both EOs was evaluated against four pathogenic strains inoculated experimentally [vol/wt]), the bactericidal activity was pronounced (p < .0001), in particular in the case of T. capitatus EO against all strains, except P. aeruginosa. The latter was still present after 15 days of storage, which explains its resistance. Practical applicationsResults from this study were confirmed that both thyme EOs could be considered as a very promising natural preservatives for foods from microbial spoilage in the food industries, also they can serve to inhibit or prevent the growth of food-borne pathogens.
The antibacterial effects of essential oils (EOs) extracted from Thymus capitatus and Thymus algeriensis were assessed and evaluated against four pathogenic bacteria (Escherichia coli (ATCC 25922), Listeria monocytogenes (ATCC 19118), Staphylococcus aureus (ATCC 25923), and Salmonella typhimurium (ATCC 1402)) and one spoilage bacterium (Pseudomonas aeruginosa (ATCC 27853)). Both investigated EOs presented significant antimicrobial activities against all tested bacteria with a greater antibacterial effect of T. capitatus EO. In fact, the results indicated that the minimum inhibitory concentrations (MICs) and the minimum bactericidal concentrations (MBCs) of T. capitatus EO are in the range of 0.006–0.012% and 0.012–0.025%, respectively, while those of T. algeriensis EO ranged between 0.012 and 0.025% and 0.05%, respectively. Furthermore, the inhibitory effects of both EOs were appraised against the spoilage bacterium P. aeruginosa, inoculated in minced beef meat, at two different loads (105 and 108 CFU) mixed with different concentrations of EOs (0.01, 0.05, 1, and 3%) and stored at 4°C for 15 days. The obtained data demonstrated that the antibacterial effect of tested EOs varies significantly in regard to the levels of meat contamination and the concentrations of EOs. In fact, in the presence of 0.01 and 0.05% of oils, a decrease in bacterial growth p < 0.01 was observed; but, such an effect was more pronounced in the presence of higher concentrations of EOs (1 and 3%), regardless the level of meat contamination. Besides, at the low contamination level, both EOs exerted a rapid and a more pronounced antibacterial effect, as compared to the high contamination level. The results illustrated the efficacy of both EOs as preservatives in food against well-known pathogens of food-borne diseases and food spoilage, particularly in P. aeruginosa in beef meat. As regards sensory evaluation, the presence of T. capitatus EO proved to improve the sensory quality of minced beef meat.
This study aimed to improve the effectiveness of Thymus capitatus and Thymus algeriensis essential oils (EOs), as food preservatives, through their encapsulation in different delivery systems (DSs), namely nanoemulsions and biopolymeric nanoparticles. DSs’ preparation is tailored to enhance not only physical stability but also resulting Eos’ antioxidant and antibacterial activities through different fabrication methods (high-pressure homogenization emulsification or antisolvent precipitation) and using different emulsifiers and stabilizers. DSs are characterized in terms of droplet size distribution, ζ-potential, and stability over time, as well as antioxidant and antibacterial activities of encapsulated EOs. The antioxidant activity was studied by the FRAP assay; the antibacterial activity was evaluated by the well diffusion method. EOs of different compositions were tested, namely two EOs extracted from Thymus capitatus, harvested from Tunisia during different periods of the year (TC1 and TC2), and one EO extracted from Thymus algeriensis (TA). The composition of TC1 was significantly richer in carvacrol than TC2 and TA. The most stable formulation was the zein-based nanoparticles prepared with TC1 and stabilized with maltodextrins, which exhibit droplet size, polydispersity index, ζ-potential, and encapsulation efficiency of 74.7 nm, 0.14, 38.7 mV, and 99.66%, respectively. This formulation led also to an improvement in the resulting antioxidant (60.69 µg/mg vs. 57.67 µg/mg for non-encapsulated TC1) and antibacterial (inhibition diameters varying between 12 and 33 mm vs. a range between 12 and 28 mm for non-encapsulated TC1) activities of EO. This formulation offers a promising option for the effective use of natural antibacterial bioactive molecules in the food industry against pathogenic and spoilage bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.