Abstract. In this paper, we investigate the problem of minimizing makespan in a multistage hybrid flow-shop scheduling with multiprocessor tasks. To generate high-quality approximate solutions to this challenging NP-hard problem, we propose a discrepancy search heuristic that is based on the new concept of adjacent discrepancies. Moreover, we describe a new lower bound based on the concept of dual feasible functions. The proposed lower and upper bounds are assessed through computational experiments conducted on 300 benchmark instances with up to 100 jobs and 8 stages. For these instances, we provide evidence that the proposed bounds consistently outperform the best existing ones. In particular, the proposed heuristic successfully improved the best known solution of 75 benchmark instances.
This paper considers multiprocessor task scheduling in a multistage hybrid flow-shop environment. The problem even in its simplest form is NP-hard in the strong sense. The great deal of interest for this problem, besides its theoretical complexity, is animated by needs of various manufacturing and computing systems. We propose a new approach based on limited discrepancy search to solve the problem. Our method is tested with reference to a proposed lower bound as well as the best-known solutions in literature. Computational results show that the developed approach is efficient in particular for large-size problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.