The immune system is highly sensitive to stressors present during spaceflight. The major emphasis of this study was on the T lymphocytes in C57BL/6NTac mice after return from a 13-day space shuttle mission (STS-118). Spleens and thymuses from flight animals (FLT) and ground controls similarly housed in animal enclosure modules (AEM) were evaluated within 3-6 h after landing. Phytohemagglutinin-induced splenocyte DNA synthesis was significantly reduced in FLT mice when based on both counts per minute and stimulation indexes (P < 0.05). Flow cytometry showed that CD3(+) T and CD19(+) B cell counts were low in spleens from the FLT group, whereas the number of NK1.1(+) natural killer (NK) cells was increased (P < 0.01 for all three populations vs. AEM). The numerical changes resulted in a low percentage of T cells and high percentage of NK cells in FLT animals (P < 0.05). After activation of spleen cells with anti-CD3 monoclonal antibody, interleukin-2 (IL-2) was decreased, but IL-10, interferon-gamma, and macrophage inflammatory protein-1alpha were increased in FLT mice (P < 0.05). Analysis of cancer-related genes in the thymus showed that the expression of 30 of 84 genes was significantly affected by flight (P < 0.05). Genes that differed from AEM controls by at least 1.5-fold were Birc5, Figf, Grb2, and Tert (upregulated) and Fos, Ifnb1, Itgb3, Mmp9, Myc, Pdgfb, S100a4, Thbs, and Tnf (downregulated). Collectively, the data show that T cell distribution, function, and gene expression are significantly modified shortly after return from the spaceflight environment.
The health consequences of exposure to low-dose radiation combined with a solar particle event during space travel remain unresolved. The goal of this study was to determine whether protracted radiation exposure alters gene expression and oxidative burst capacity in the liver, an organ vital in many biological processes. C57BL/6 mice were whole-body irradiated with 2 Gy simulated solar particle event (SPE) protons over 36 h, both with and without pre-exposure to low-dose/low-dose-rate photons ((57)Co, 0.049 Gy total at 0.024 cGy/h). Livers were excised immediately after irradiation (day 0) or on day 21 thereafter for analysis of 84 oxidative stress-related genes using RT-PCR; genes up or down-regulated by more than twofold were noted. On day 0, genes with increased expression were: photons, none; simulated SPE, Id1; photons + simulated SPE, Bax, Id1, Snrp70. Down-regulated genes at this same time were: photons, Igfbp1; simulated SPE, Arnt2, Igfbp1, Il6, Lct, Mybl2, Ptx3. By day 21, a much greater effect was noted than on day 0. Exposure to photons + simulated SPE up-regulated completely different genes than those up-regulated after either photons or the simulated SPE alone (photons, Cstb; simulated SPE, Dctn2, Khsrp, Man2b1, Snrp70; photons + simulated SPE, Casp1, Col1a1, Hspcb, Il6st, Rpl28, Spnb2). There were many down-regulated genes in all irradiated groups on day 21 (photons, 13; simulated SPE, 16; photons + simulated SPE, 16), with very little overlap among groups. Oxygen radical production by liver phagocytes was significantly enhanced by photons on day 21. The results demonstrate that whole-body irradiation with low-dose-rate photons, as well as time after exposure, had a great impact on liver response to a simulated solar particle event.
A better understanding of low dose radiation effects is needed to accurately estimate health risks. In this study, C57BL/6 mice were gamma-irradiated to total doses of 0, 0.01, 0.05, and 0.1 Gy ((57)Co; ~0.02 cGy/h). Subsets per group were euthanized at the end of irradiation (day 0) and on days 4 and 21 thereafter. Relative spleen mass and splenic white blood cell (WBC) counts, major leukocyte populations, and spontaneous DNA synthesis were consistently higher in the irradiated groups on day 0 compared to 0 Gy controls, although significance was not always obtained. In the spleen, all three major leukocyte types were significantly elevated on day 0 (P < 0.05). By day 21 post-irradiation the T, B, and natural killer (NK) cell counts, as well as CD4(+) T cells and CD4:CD8 T cell ratio, were low especially in the 0.01 Gy group. Although blood analyses showed no significant differences in leukocyte counts or red blood cell and platelet characteristics, the total T cells, CD4(+) T cells, and NK cells were increased by day 21 after 0.01 Gy (P < 0.05). Gene analysis of CD4(+) T cells negatively isolated from spleens on day 0 after 0.1 Gy showed significantly enhanced expression of Il27 and Tcfcp2, whereas Inha and Socs5 were down-regulated by 0.01 Gy and 0.1 Gy, respectively (P < 0.05). A trend for enhancement was noted in two additional genes (Il1r1 and Tbx21) in the 0.1 Gy group (P < 0.1). The data show that protracted low dose photons had dose- and time-dependent effects on CD4(+) T cells after whole-body exposure.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.