In this paper, we present an approach for Arabic and Latin script and its type identification based on Histogram of Oriented Gradients (HOG) descriptors. HOGs are first applied at word level based on writing orientation analysis. Then, they are extended to word image partitions to capture fine and discriminative details. Pyramid HOG are also used to study their effects on different observation levels of the image. Finally, co-occurrence matrices of HOG are performed to consider spatial information between pairs of pixels which is not taken into account in basic HOG. A genetic algorithm is applied to select the potential informative features combinations which maximizes the classification accuracy. The output is a relatively short descriptor that provides an effective input to a Bayes-based classifier. Experimental results on a set of words, extracted from standard databases, show that our identification system is robust and provides good word script and type identification: 99.07% of words are correctly classified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.