This article presents an analysis of handwritten signature dynamics belonging to two authentication groups, namely genuine and forged signature samples. Genuine signatures are initially classified based on their relative size, graphical complexity, and legibility as perceived by human examiners. A pool of dynamic features is then extracted for each signature sample in the two groups. A two-way analysis of variance (ANOVA) is carried out to investigate the effects and the relationship between the perceived classifications and the authentication groups. Homogeneity of variance was ensured through Bartlett's test prior to ANOVA testing. The results demonstrated that among all the investigated dynamic features, pen pressure is the most distinctive which is significantly different for the two authentication groups as well as for the different perceived classifications. In addition, all the relationships investigated, namely authenticity group versus size, graphical complexity, and legibility, were found to be positive for pen pressure.
This paper presents an analysis performance of different features in distinguishing between genuine and forged signatures for HMM based offline signature verification systems. The four offline features include pixel density, centre of gravity, distance and angle. All features considered are local in nature. The analysis technique used here is based on analysis of variance (ANOVA). Experimental results show that the combination of center of gravity and pixel density features are good for distinguishing between genuine and skilled forgeries for an HMM based offline signature verification system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.