Microcalcifications (MCs) are considered as the first indicator of breast cancer development. Their morphology, in terms of shape and size, is considered as the most important criterion that determines their malignity degrees. Therefore, the accurate delineation of MC is a cornerstone step in their automatic diagnosis process. In this paper, we propose a new conditional region growing (CRG) approach with the ability of finding the accurate MC boundaries starting from selected seed points. The starting seed points are determined based on regional maxima detection and superpixel analysis. The region growing step is controlled by a set of criteria that are adapted to MC detection in terms of contrast and shape variation. These criteria are derived from prior knowledge to characterize MCs and can be divided into two categories. The first one concerns the neighbourhood searching size. The second one deals with the analysis of gradient information and shape evolution within the growing process. In order to prove the effectiveness and the reliability in terms of MC detection and delineation, several experiments have been carried out on MCs of various types, with both qualitative and quantitative analysis. The comparison of the proposed approach with state-of-the art proves the importance of the used criteria in the context of MC delineation, towards a better management of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.