The aim of this chapter is to investigate the hardware (H/W) implementation of Genetic Algorithm (GA) based motion path planning of robot. The potential benefit of using H/W implementation of genetic algorithm is that it allows the use of huge parallelism which is suited to random number generation, crossover, mutation and fitness evaluation. The operation of selection and reproduction are basically problem independent and involve basic string manipulation tasks. The fitness evaluation task, which is problem dependent, however proves a major difficulty in H/W implementation. Another difficulty comes from that designs can only be used for the individual problem their fitness function represents. Therefore, in this work the genetic operators are implemented in H/W, while the fitness evaluation module is implemented in software (S/W). This allows a mixed hardware/software approach to address both generality and acceleration. Moreover, a simple H/W implementation for fitness evaluation of robot motion path planning problem is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.