In this paper, we apply a new technique combined by a Sumudu transform and iterative method called the Sumudu iterative method for resolving non-linear partial differential equations to compute analytic solutions. The aim of this paper is to construct the efficacious frequent relation to resolve these problems. The suggested technique is tested on four problems. So the results of this study are debated to show how useful this method is in terms of being a powerful, accurate and fast tool with a little effort compared to other iterative methods.
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of non-linear partial differential equations with small amount of computations does not require to calculate restrictive assumptions or transformation like other conventional methods. In addition, several examples clarify the relevant features of this presented method, so the results of this study are debated to show that this method is a powerful tool and promising to illustrate the accuracy and efficiency for solving these problems. To evaluate the results in the iterative process we used the Matlab symbolic manipulator.
We present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.
The Emden-Fowler equation (E-F.Eq.) used in mathematical with other science like physics, chemical physics and astrophysics, also this equation can be reduces to the Lane-Emden equation with specified function and used it in different sciences with mathematics. Many Authors study analytic and numerical methods to find the solution for this kind of the equations in the case linear or nonlinear one of these methods the homotopy-perturbation method.In this work the approximate solution for generalized (E-F.Eq.) in the second order ordinary differential equations was found by Galerkin method which is one of the weighted residual methods and do not need long time also use operator (linear or nonlinear) or differential operator in the any kind of the intervals and compared this solution with the exact solution by discuss the results from applying this method for homogeneous and nonhomogeneous equations and drown the solutions in the same figure to illustrate the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.