Bipolar soft set theory is a mathematical tool associates between bipolarity and soft set theory, it is defined by two soft sets one of them gives us the positive information where the other gives us the negative. The goal of our paper is to define the bipolar soft topological space on a bipolar soft set and study its basic notions and properties. We also investigate the definitions of: bipolar soft interior, bipolar soft closure, bipolar soft exterior, bipolar soft boundary and establish some important properties on them. Some relations between them are also discussed. Moreover, the notions of bipolar soft point, bipolar soft limit point and the derived set of a bipolar soft set are discussed. In additions, examples are presented to illustrate our work.
Transitivity is a key element in a chaotic dynamical system. In this paper, we present some relations between transitivity, stronger and alternative notions of it on compact and dendrite spaces. The relation between Auslander and Yorke chaos and Devaney chaos on dendrites is also discussed. Moreover, we prove that Devaney chaos implies strong dense periodicity on dendrites while the converse is not true.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.