In this paper, a deterministic and stochastic fractional-order model of the tri-trophic food chain model incorporating harvesting is proposed and analysed. The interaction between prey, middle predator and top predator population is investigated. In order to clarify the characteristics of the proposed model, the analysis of existence, uniqueness, non-negativity and boundedness of the solutions of the proposed model are examined. Some sufficient conditions that ensure the local and global stability of equilibrium points are obtained. By using stability analysis of the fractional-order system, it is proved that if the basic reproduction number R 0 < 1, the predator free equilibrium point E 1 is globally asymptotically stable. The occurrence of local bifurcation near the equilibrium points is investigated with the help of Sotomayor's theorem. Some numerical examples are given to illustrate the theoretical findings. The impact of harvesting on prey and the middle predator is studied. We conclude that harvesting parameters can control the dynamics of the middle predator. A numerical approximation method is developed for the proposed stochastic fractional-order model.
In this paper, a deterministic and stochastic fractional order model for lesser date moth (LDM) using mating disruption and natural enemies is proposed and analysed. The interaction between LDM larvae, fertilized LDM female, unfertilized LDM female, LDM male and the natural enemy is investigated. In order to clarify the characteristics of the proposed deterministic fractional order model, the analysis of existence, uniqueness, non-negativity and boundedness of the solutions of the proposed fractional-order model are examined. In addition, some sufficient conditions are obtained to ensure the local and global stability of equilibrium points. The occurrence of local bifurcation near the equilibrium points is investigated with the help of Sotomayor's theorem. Numerical simulations are conducted to illustrate the properties of the proposed fractional order model with respect to the intrinsic growth rate of the LDM larvae, natural enemy's mortality rate, predation rate, sex pheromone trap parameter, fractional order and environmental noise. The impact of mating disruption on lesser date moth is demonstrated. Also, a numerical approximation method is developed for the proposed stochastic fractional-order model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.