Background: In our current digital world, smartphones are no longer limited to communication but are used in various real-world applications. In the healthcare industry, smartphones have sensors that can record data about our daily activities. Such data can be used for many healthcare purposes, such as elderly healthcare services, early disease diagnoses, and archiving patient data for further use. However, the data collected from the various sensors involve high dimensional features, which are not equally helpful in human activity recognition (HAR). Methods: This paper proposes an algorithm for selecting the most relevant subset of features that will contribute efficiently to the HAR process. The proposed method is based on a hybrid version of the recent Coronavirus Disease Optimization Algorithm (COVIDOA) with Simulated Annealing (SA). SA algorithm is merged with COVIDOA to improve its performance and help escape the local optima problem. Results: The UCI-HAR dataset from the UCI machine learning repository assesses the proposed algorithm’s performance. A comparison is conducted with seven well-known feature selection algorithms, including the Arithmetic Optimization Algorithm (AOA), Gray Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), Reptile Search Algorithm (RSA), Zebra Optimization Algorithm (ZOA), Gradient-Based Optimizer (GBO), Seagull Optimization Algorithm (SOA), and Coyote Optimization Algorithm (COA) regarding fitness, STD, accuracy, size of selected subset, and processing time. Conclusions: The results proved that the proposed approach outperforms state-of-the-art HAR techniques, achieving an average performance of 97.82% in accuracy and a reduction ratio in feature selection of 52.7%.
Background: Bio-signals are the essential data that smart healthcare systems require for diagnosing and treating common diseases. However, the amount of these signals that need to be processed and analyzed by healthcare systems is huge. Dealing with such a vast amount of data presents difficulties, such as the need for high storage and transmission capabilities. In addition, retaining the most useful clinical information in the input signal is essential while applying compression. Methods: This paper proposes an algorithm for the efficient compression of bio-signals for IoMT applications. This algorithm extracts the features of the input signal using block-based HWT and then selects the most important features for reconstruction using the novel COVIDOA. Results: We utilized two different public datasets for evaluation: MIT-BIH arrhythmia and EEG Motor Movement/Imagery, for ECG and EEG signals, respectively. The proposed algorithm’s average values for CR, PRD, NCC, and QS are 18.06, 0.2470, 0.9467, and 85.366 for ECG signals and 12.6668, 0.4014, 0.9187, and 32.4809 for EEG signals. Further, the proposed algorithm shows its efficiency over other existing techniques regarding processing time. Conclusions: Experiments show that the proposed method successfully achieved a high CR while maintaining an excellent level of signal reconstruction in addition to its reduced processing time compared with the existing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.