Soil salinity is one of the most severe factors limiting growth and physiological response in cowpea plants. In this study, the possible role of γ-irradiation in alleviating soil salinity stress during plant growth was investigated. Increasing salinity in the soil (25, 50, 100 and 200 mM NaCl) decreased plant growth, photosynthetic pigments content, total carbohydrate content and mineral uptake compared to control, while increased total phenol content, proline, total free amino acids and lipid peroxidation. Seed irradiation with gamma rays significantly increased plant growth, photosynthetic pigments, total carbohydrate, total phenol, proline, total free amino acids and the contents of N, P, K +, Ca+2 and Mg+2 compared to non irradiated ones under salinity. On the other hand, irradiation with gamma rays decreased lipid peroxidation, Na+ and Cl- contents which may contribute in part to activate processes involved in the alleviation of the harmful effect of salt at all concentrations used (25, 50 and 100 mM) except at the high concentration (200 mM). Electrophoretic studies of α-esterase, β-esterase, polyphenol oxidase, peroxidase and acid phosphatase isozymes showed wide variations in their intensities among all treatments.
Previous studies recorded positive impact of ZnO NPs on plants stressed with salinity. The current work was performed to study the effect of two different concentrations of biosynthesized ZnO NPs (50 and 100 mg L−1) on faba bean plants under salinity stress. The zinc oxide nanoparticles (ZnO NPs) were synthesized using Mentha extract, and their shape and size were characterized using X-ray diffraction and transmission electron microscope while diffuse reflectance spectra were measured using UV–Vis spectrophotometer. The generated ZnO NPs were spherical with a particle size 9.4 nm and had a rod form with particle size 15.2 in length and 3.5 nm in width. The response of faba been plants to the foliar spray of ZnO NPs concentrations (0, 50, and 100 mg L−1) alone and in combination with salt stress at 150 mM NaCl was studied. Salinity induced reduction in faba bean root and shoot length and dry/fresh weights, while an enhancement was recorded in response to foliar treatment with ZnO NPs at 50 and 100 mg L−1 either in presence or absence of salinity stress. The highest amounts of chlorophyll a, b, carotenoids, and total pigments were recorded in plants received 50 mg L−1 ZnO NPs compared to the alternative control. Secondary metabolites (phenols, flavonoids, and tannins) were accumulated in salinity-stressed plants and further accumulation in response to ZnO NPs treatment was noticed. Amino acids, proline, glycine betaine, and total soluble sugars, as well as enzymatic and non-enzymatic antioxidant contents, increased almost onefold in salinity-stressed plants as compared to control plants while the 50 mg L−1 ZnO NPs treatment resulted in higher accumulation of the previously mentioned substances. In contrast, plants oxidative stress was reduced in response to ZnO NPs treatments. The nitrogen, phosphorus, potassium, calcium, zinc, and iron contents of faba bean plants were recorded under salinity stress and in response to the two applied concentrations of ZnO NPs. Faba bean plants stressed with 150 MN NaCl showed growth decline that may be attributed to osmotic stress and low water availability imposed by salinity. The treatment of stressed plants with 50 mg L−1 ZnO NPs induced an enhancement in plant growth as well as an accumulation of antioxidants, osmolytes, and secondary metabolites that could help plants overcome the negative effects of salinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.